{"title":"Grape berry native yeast microbiota: advancing trends in the development of sustainable vineyard pathogen biocontrol strategies","authors":"Peter Ayogu, V. Martins, H. Gerós","doi":"10.20870/oeno-one.2024.58.1.7678","DOIUrl":null,"url":null,"abstract":"Grape berry is an ecological niche for a myriad of microbes, whose interactions with one another modulate fruit health and can play a role in fermentation, imparting character and distinctiveness to wines. With the growing concerns about and awareness of the risks associated with the overuse of chemical pesticides in viticulture, microbial-based pest control is increasingly encouraged as a more sustainable and environmentally friendly strategy. The use of yeasts from grape berries is a promising alternative for the control of vineyard diseases and their increasing acceptance is rapidly changing our perception of fungicides. In this paper, we provide an overview of the latest methodologies for characterising the dynamics of grape berry yeasts in the context of grape disease management, and discuss the prospects for their effective use as biocontrol agents in viticulture. Most research has focused on the control of fruit rots produced by Botrytis, Aspergillus, Colletotrichum and Penicillium spp. using formulations that comprise single strains of specific yeast genera, including Aureobasidium, Metschnikowia, Saccharomyces, Pichia, Candida and Rhodotorula. However, the challenging disparity between successful biocontrol outcomes obtained in vitro and their low applicability in the field is a major limitation for the large-scale implementation of these strategies. Novel research approaches for maximising the stability and efficiency of yeast-derived bioactives are discussed in this review.","PeriodicalId":19510,"journal":{"name":"OENO One","volume":"29 30","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OENO One","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.20870/oeno-one.2024.58.1.7678","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Grape berry is an ecological niche for a myriad of microbes, whose interactions with one another modulate fruit health and can play a role in fermentation, imparting character and distinctiveness to wines. With the growing concerns about and awareness of the risks associated with the overuse of chemical pesticides in viticulture, microbial-based pest control is increasingly encouraged as a more sustainable and environmentally friendly strategy. The use of yeasts from grape berries is a promising alternative for the control of vineyard diseases and their increasing acceptance is rapidly changing our perception of fungicides. In this paper, we provide an overview of the latest methodologies for characterising the dynamics of grape berry yeasts in the context of grape disease management, and discuss the prospects for their effective use as biocontrol agents in viticulture. Most research has focused on the control of fruit rots produced by Botrytis, Aspergillus, Colletotrichum and Penicillium spp. using formulations that comprise single strains of specific yeast genera, including Aureobasidium, Metschnikowia, Saccharomyces, Pichia, Candida and Rhodotorula. However, the challenging disparity between successful biocontrol outcomes obtained in vitro and their low applicability in the field is a major limitation for the large-scale implementation of these strategies. Novel research approaches for maximising the stability and efficiency of yeast-derived bioactives are discussed in this review.
OENO OneAgricultural and Biological Sciences-Food Science
CiteScore
4.40
自引率
13.80%
发文量
85
审稿时长
13 weeks
期刊介绍:
OENO One is a peer-reviewed journal that publishes original research, reviews, mini-reviews, short communications, perspectives and spotlights in the areas of viticulture, grapevine physiology, genomics and genetics, oenology, winemaking technology and processes, wine chemistry and quality, analytical chemistry, microbiology, sensory and consumer sciences, safety and health. OENO One belongs to the International Viticulture and Enology Society - IVES, an academic association dedicated to viticulture and enology.