Talia Bergaglio, Olena Synhaivska and Peter Niraj Nirmalraj*,
{"title":"3D Holo-tomographic Mapping of COVID-19 Microclots in Blood to Assess Disease Severity","authors":"Talia Bergaglio, Olena Synhaivska and Peter Niraj Nirmalraj*, ","doi":"10.1021/cbmi.3c00126","DOIUrl":null,"url":null,"abstract":"<p >The coronavirus disease 2019 (COVID-19) has impacted health globally. Cumulative evidence points to long-term effects of COVID-19 such as cardiovascular and cognitive disorders, diagnosed in patients even after the recovery period. In particular, micrometer-sized blood clots and hyperactivated platelets have been identified as potential indicators of long COVID. Here, we resolve microclot structures in the plasma of patients with different subphenotypes of COVID-19 in a label-free manner, using 3D digital holo-tomographic microscopy (DHTM). Based on 3D refractive index (RI) tomograms, the size, dry mass, and prevalence of microclot composites were quantified and then parametrically differentiated from fibrin-rich microclots and platelet aggregates in the plasma of COVID-19 patients. Importantly, fewer microclots and platelet aggregates were detected in the plasma of healthy controls compared to COVID-19 patients. Our imaging and analysis workflow is built around a commercially available DHT microscope capable of operation in clinical settings with a 2 h time period from sample preparation and data acquisition to results.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 3","pages":"194–204"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The coronavirus disease 2019 (COVID-19) has impacted health globally. Cumulative evidence points to long-term effects of COVID-19 such as cardiovascular and cognitive disorders, diagnosed in patients even after the recovery period. In particular, micrometer-sized blood clots and hyperactivated platelets have been identified as potential indicators of long COVID. Here, we resolve microclot structures in the plasma of patients with different subphenotypes of COVID-19 in a label-free manner, using 3D digital holo-tomographic microscopy (DHTM). Based on 3D refractive index (RI) tomograms, the size, dry mass, and prevalence of microclot composites were quantified and then parametrically differentiated from fibrin-rich microclots and platelet aggregates in the plasma of COVID-19 patients. Importantly, fewer microclots and platelet aggregates were detected in the plasma of healthy controls compared to COVID-19 patients. Our imaging and analysis workflow is built around a commercially available DHT microscope capable of operation in clinical settings with a 2 h time period from sample preparation and data acquisition to results.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging