{"title":"Inkjet-Printed Transistors with Coffee Ring Aligned Carbon Nanotubes","authors":"Paria Naderi, Gerd Grau","doi":"10.1088/2058-8585/ad1ccf","DOIUrl":null,"url":null,"abstract":"\n Low-concentration deposition techniques such as inkjet printing for forming carbon nanotube (CNT) transistor channels typically result in higher on-off current ratio, while lowering the field-effect mobility compared to traditional high-concentration techniques. In this paper, we show that inkjet-printed devices can have both high field-effect mobility and on-off current ratio by utilizing coffee ring induced thickness variation in the channel. The coffee ring effect occurs naturally in printed patterns with most solvents and substrates, and it pushes dissolved particles to the edges of printed features. Thickness variation and coffee ring effect are usually avoided in the channel of solution processed TFTs by implementing additional expensive steps in the fabrication process. Instead, here, we control these variations and utilize them to create inkjet-printed CNT channels with printing induced thickness variation that improves transistor properties. Printing properties such as printing speed, and number of layers are studied to manipulate capillary flow and form thicker line edges, which ultimately enhance current transport in the CNT network. A two-pass printing pattern with separate lines improves the field-effect mobility five times compared to a pattern with connected lines that has no defined edges. The field-effect mobility increases from 1.1 to 5.7 cm2/V.s at a drain voltage of -2 V.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":"40 23","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/ad1ccf","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Low-concentration deposition techniques such as inkjet printing for forming carbon nanotube (CNT) transistor channels typically result in higher on-off current ratio, while lowering the field-effect mobility compared to traditional high-concentration techniques. In this paper, we show that inkjet-printed devices can have both high field-effect mobility and on-off current ratio by utilizing coffee ring induced thickness variation in the channel. The coffee ring effect occurs naturally in printed patterns with most solvents and substrates, and it pushes dissolved particles to the edges of printed features. Thickness variation and coffee ring effect are usually avoided in the channel of solution processed TFTs by implementing additional expensive steps in the fabrication process. Instead, here, we control these variations and utilize them to create inkjet-printed CNT channels with printing induced thickness variation that improves transistor properties. Printing properties such as printing speed, and number of layers are studied to manipulate capillary flow and form thicker line edges, which ultimately enhance current transport in the CNT network. A two-pass printing pattern with separate lines improves the field-effect mobility five times compared to a pattern with connected lines that has no defined edges. The field-effect mobility increases from 1.1 to 5.7 cm2/V.s at a drain voltage of -2 V.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.