A risk-aware reference trajectory resampling method for quadrotor tracking accuracy improvement

Kaizheng Zhang, Jian Di, Jiulong Wang, Xinghu Wang, Haibo Ji
{"title":"A risk-aware reference trajectory resampling method for quadrotor tracking accuracy improvement","authors":"Kaizheng Zhang, Jian Di, Jiulong Wang, Xinghu Wang, Haibo Ji","doi":"10.1108/ria-10-2023-0151","DOIUrl":null,"url":null,"abstract":"\nPurpose\nMany existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual tracking capability, the generated trajectories may not be suitable for tracking control. The purpose of this paper is to design an online adjustment algorithm to improve the overall quadrotor trajectory tracking performance.\n\n\nDesign/methodology/approach\nThe authors propose a reference trajectory resampling layer (RTRL) to dynamically adjust the reference signals according to the current tracking status and future tracking risks. First, the authors design a risk-aware tracking monitor that uses the Frenét tracking errors and the curvature and torsion of the reference trajectory to evaluate tracking risks. Then, the authors propose an online adjusting algorithm by using the time scaling method.\n\n\nFindings\nThe proposed RTRL is shown to be effective in improving the quadrotor trajectory tracking accuracy by both simulation and experiment results.\n\n\nOriginality/value\nInfeasible reference trajectories may cause serious accidents for autonomous quadrotors. The results of this paper can improve the safety of autonomous quadrotor in application.\n","PeriodicalId":501194,"journal":{"name":"Robotic Intelligence and Automation","volume":"53 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotic Intelligence and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ria-10-2023-0151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual tracking capability, the generated trajectories may not be suitable for tracking control. The purpose of this paper is to design an online adjustment algorithm to improve the overall quadrotor trajectory tracking performance. Design/methodology/approach The authors propose a reference trajectory resampling layer (RTRL) to dynamically adjust the reference signals according to the current tracking status and future tracking risks. First, the authors design a risk-aware tracking monitor that uses the Frenét tracking errors and the curvature and torsion of the reference trajectory to evaluate tracking risks. Then, the authors propose an online adjusting algorithm by using the time scaling method. Findings The proposed RTRL is shown to be effective in improving the quadrotor trajectory tracking accuracy by both simulation and experiment results. Originality/value Infeasible reference trajectories may cause serious accidents for autonomous quadrotors. The results of this paper can improve the safety of autonomous quadrotor in application.
用于提高四旋翼飞行器跟踪精度的风险感知参考轨迹重采样方法
目的 许多现有的轨迹优化算法都使用最大速度或加速度等参数来制定约束条件。由于忽略了四旋翼飞行器的实际跟踪能力,生成的轨迹可能不适合跟踪控制。本文旨在设计一种在线调整算法,以提高四旋翼飞行器的整体轨迹跟踪性能。作者提出了一种参考轨迹重采样层(RTRL),可根据当前的跟踪状态和未来的跟踪风险动态调整参考信号。首先,作者设计了一种风险感知跟踪监控器,它使用 Frenét 跟踪误差以及参考轨迹的曲率和扭转来评估跟踪风险。通过仿真和实验结果表明,所提出的 RTRL 能有效提高四旋翼飞行器的轨迹跟踪精度。本文的结果可以提高自主四旋翼飞行器在应用中的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信