Field Tests and the Numerical Analysis of a Pile-Net Composite Foundation for an Intelligent Connected Motor-Racing Circuit

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Xiaonan Wang, Qitao Pei
{"title":"Field Tests and the Numerical Analysis of a Pile-Net Composite Foundation for an Intelligent Connected Motor-Racing Circuit","authors":"Xiaonan Wang, Qitao Pei","doi":"10.3390/buildings14010174","DOIUrl":null,"url":null,"abstract":"In response to the problem of significant post-construction settlement that may occur in a motor racing circuit (MRC), two representative composite foundation testing areas, PHC pile (pre-tensioned spun high-strength concrete pile) and CFG pile (cement fly ash gravel pile), were selected for field tests to obtain the deformation law of pile–soil. Then, finite element numerical simulation was used to carry out back analysis on the geological mechanical parameters of the testing areas. The results showed that the error of soil settlement between the piles in the PHC pile and CFG pile testing areas were 8.2% and 9.6%, respectively, with good inversion precision. The obtained geological mechanical parameters can be used to predict the settlement of the rest of the MRC. On this basis, a finite element numerical model was constructed to analyze the bearing and deformation characteristics of the foundation of the MRC under five types of working conditions that may cause significant post-construction settlement. It showed that the settlement of the embankment was large in the middle and small on both sides after the consolidation of the embankment. The maximum settlement was about 27.0 mm, and the maximum longitudinal uneven settlement ratio of the embankment was 1.3/4000. The axial force of piles in the PHC pile and CFG pile composite foundations increased first and then decreased with depth. The maximum bending moment was located at the foot of slopes or at the boundary of strata, which was relatively small in the middle of the embankment. The deformation of the embankment and the bearing capacity of the piles could meet engineering requirements. This study has certain guiding significance for the design and construction of similar pile-net composite foundations.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"78 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010174","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the problem of significant post-construction settlement that may occur in a motor racing circuit (MRC), two representative composite foundation testing areas, PHC pile (pre-tensioned spun high-strength concrete pile) and CFG pile (cement fly ash gravel pile), were selected for field tests to obtain the deformation law of pile–soil. Then, finite element numerical simulation was used to carry out back analysis on the geological mechanical parameters of the testing areas. The results showed that the error of soil settlement between the piles in the PHC pile and CFG pile testing areas were 8.2% and 9.6%, respectively, with good inversion precision. The obtained geological mechanical parameters can be used to predict the settlement of the rest of the MRC. On this basis, a finite element numerical model was constructed to analyze the bearing and deformation characteristics of the foundation of the MRC under five types of working conditions that may cause significant post-construction settlement. It showed that the settlement of the embankment was large in the middle and small on both sides after the consolidation of the embankment. The maximum settlement was about 27.0 mm, and the maximum longitudinal uneven settlement ratio of the embankment was 1.3/4000. The axial force of piles in the PHC pile and CFG pile composite foundations increased first and then decreased with depth. The maximum bending moment was located at the foot of slopes or at the boundary of strata, which was relatively small in the middle of the embankment. The deformation of the embankment and the bearing capacity of the piles could meet engineering requirements. This study has certain guiding significance for the design and construction of similar pile-net composite foundations.
用于智能互联赛车场的桩网复合地基的现场试验和数值分析
针对赛车场(MRC)可能出现的明显施工后沉降问题,选择了两个具有代表性的复合地基试验区,即 PHC 桩(预应力旋喷高强混凝土桩)和 CFG 桩(水泥粉煤灰碎石桩)进行现场试验,以获得桩土的变形规律。然后,利用有限元数值模拟对试验区的地质力学参数进行反演分析。结果表明,PHC 桩试验区和 CFG 桩试验区桩土沉降误差分别为 8.2% 和 9.6%,反演精度较好。所获得的地质力学参数可用于预测 MRC 其他部分的沉降。在此基础上,建立了有限元数值模型,分析了五种可能导致施工后显著沉降的工况条件下,多孔中心地基的承载和变形特征。结果表明,路堤固结后的沉降量中间大,两边小。最大沉降量约为 27.0 毫米,路堤最大纵向不均匀沉降比为 1.3/4000。PHC 桩和 CFG 桩复合地基中桩的轴力随深度的增加先增加后减小。最大弯矩位于坡脚或地层边界,在路堤中部相对较小。路堤变形和桩基承载力均能满足工程要求。本研究对类似桩网复合地基的设计和施工具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信