Finite commutative rings whose line graphs of comaximal graphs have genus at most two

IF 0.7 4区 数学 Q2 MATHEMATICS
Huadong Su
{"title":"Finite commutative rings whose line graphs of comaximal graphs have genus at most two","authors":"Huadong Su","doi":"10.15672/hujms.1256413","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring with identity. The comaximal graph of $R$, denoted by $\\Gamma(R)$, is a simple graph with vertex set $R$ and two different vertices $a$ and $b$ are adjacent if and only if $aR+bR=R$. Let $\\Gamma_{2}(R)$ be a subgraph of $\\Gamma(R)$ induced by $R\\backslash\\{U(R)\\cup J(R)\\}$. In this paper, we investigate the genus of the line graph $L(\\Gamma(R))$ of $\\Gamma(R)$ and the line graph $L(\\Gamma_{2}(R))$ of $\\Gamma_2(R)$. All finite commutative rings whose genus of $L(\\Gamma(R))$ and $L(\\Gamma_{2}(R))$ are 0, 1, 2 are completely characterized, respectively.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"6 9","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1256413","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a ring with identity. The comaximal graph of $R$, denoted by $\Gamma(R)$, is a simple graph with vertex set $R$ and two different vertices $a$ and $b$ are adjacent if and only if $aR+bR=R$. Let $\Gamma_{2}(R)$ be a subgraph of $\Gamma(R)$ induced by $R\backslash\{U(R)\cup J(R)\}$. In this paper, we investigate the genus of the line graph $L(\Gamma(R))$ of $\Gamma(R)$ and the line graph $L(\Gamma_{2}(R))$ of $\Gamma_2(R)$. All finite commutative rings whose genus of $L(\Gamma(R))$ and $L(\Gamma_{2}(R))$ are 0, 1, 2 are completely characterized, respectively.
组合图形的线图最多有两个属的有限交换环
让 $R$ 是一个具有同一性的环。当且仅当 $aR+bR=R$ 时,$R$ 的 comaximal 图(用 $\Gamma(R)$ 表示)是顶点集为 $R$ 的简单图,且两个不同的顶点 $a$ 和 $b$ 相邻。让 $\Gamma_{2}(R)$ 成为 $\Gamma(R)$ 的子图,由 $R\backslash\{U(R)\cup J(R)\}$ 引导。本文将研究 $\Gamma(R)$ 的线图 $L(\Gamma(R))$ 和 $\Gamma_2}(R)$ 的线图 $L(\Gamma_{2}(R))$。所有有限交换环的$L(\Gamma(R))$ 和$L(\Gamma_{2}(R))$ 的种属分别为 0, 1, 2 的都被完全表征了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信