Comparison of different global ensemble prediction systems for tropical cyclone intensity forecasting

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Deyu Lu, Ruiqiang Ding, Jiangyu Mao, Quanjia Zhong, Qian Zou
{"title":"Comparison of different global ensemble prediction systems for tropical cyclone intensity forecasting","authors":"Deyu Lu,&nbsp;Ruiqiang Ding,&nbsp;Jiangyu Mao,&nbsp;Quanjia Zhong,&nbsp;Qian Zou","doi":"10.1002/asl.1207","DOIUrl":null,"url":null,"abstract":"<p>Many meteorological centers have operationally implemented global model-based ensemble prediction systems (GEPSs), making tropical cyclone (TC) forecasts from these systems available. The relatively low resolution of these GEPSs means that limits previous studies primarily focused on TC track forecasting. However, recent GEPS upgrades mean that TC intensity predictions from GEPSs are now also becoming of interest. This study focuses on the verification and comparison of the latest generation of GEPSs for TC intensity forecasts, particularly during the rapid intensification (RI) period over the western North Pacific (WP), eastern North Pacific (EP), and North Atlantic (NA) basins in 2021–2022. On average, the National Centers for Environmental Prediction (NCEP) GEPS performed best in predicting both TC intensity and RI across all three basins. Nevertheless, the exact timing of RI remains highly uncertain for these GEPS, indicating significant limitations in using GEPSs to forecast RI.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1207","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1207","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Many meteorological centers have operationally implemented global model-based ensemble prediction systems (GEPSs), making tropical cyclone (TC) forecasts from these systems available. The relatively low resolution of these GEPSs means that limits previous studies primarily focused on TC track forecasting. However, recent GEPS upgrades mean that TC intensity predictions from GEPSs are now also becoming of interest. This study focuses on the verification and comparison of the latest generation of GEPSs for TC intensity forecasts, particularly during the rapid intensification (RI) period over the western North Pacific (WP), eastern North Pacific (EP), and North Atlantic (NA) basins in 2021–2022. On average, the National Centers for Environmental Prediction (NCEP) GEPS performed best in predicting both TC intensity and RI across all three basins. Nevertheless, the exact timing of RI remains highly uncertain for these GEPS, indicating significant limitations in using GEPSs to forecast RI.

Abstract Image

Abstract Image

热带气旋强度预报中不同全球集合预报系统的比较
许多气象中心已经在业务上实施了基于全球模式的集合预报系统(GEPSs),可以利用这些系统进行热带气旋(TC)预报。这些全球集合预报系统的分辨率相对较低,这意味着以前的研究主要集中于热带气旋路径预报。然而,最近全球全球定位系统的升级意味着来自全球全球定位系统的热带气旋强度预测现在也开始受到关注。本研究的重点是验证和比较最新一代全球热气流预报系统对热带气旋强度预报的作用,尤其是在 2021-2022 年北太平洋西部、北太平洋东部和北大西洋盆地的快速增强(RI)期间。平均而言,美国国家环境预报中心(NCEP)的全球气旋预报系统在预测所有三个盆地的热带气旋强度和 RI 方面表现最佳。尽管如此,这些全球环境预报系统对 RI 的确切时间仍有很大的不确定性,这表明使用全球环境预报系统预测 RI 有很大的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信