A Study of Convergence of Sixth-Order Contraharmonic-Mean Newton’s Method (CHN) with Applications and Dynamics

Manoj K. Singh, Ioannis K. Argyros, Samundra Regmi
{"title":"A Study of Convergence of Sixth-Order Contraharmonic-Mean Newton’s Method (CHN) with Applications and Dynamics","authors":"Manoj K. Singh, Ioannis K. Argyros, Samundra Regmi","doi":"10.3390/foundations4010005","DOIUrl":null,"url":null,"abstract":"We develop the local convergence of the six order Contraharmonic-mean Newton’s method (CHN) to solve Banach space valued equations. Our analysis approach is two fold: The first way uses Taylor’s series and derivatives of higher orders. The second one uses only the first derivatives. We examine the theoretical results by solving a boundary value problem also using the examples relating the proposed method with other’s methods such as Newton’s, Kou’s and Jarratt’s to show that the proposed method performs better. The conjugate maps for second-degree polynomial are verified. We also calculate the fixed points (extraneous). The article is completed with the study of basins of attraction, which support and further validate the theoretical and numerical results.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"18 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations4010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the local convergence of the six order Contraharmonic-mean Newton’s method (CHN) to solve Banach space valued equations. Our analysis approach is two fold: The first way uses Taylor’s series and derivatives of higher orders. The second one uses only the first derivatives. We examine the theoretical results by solving a boundary value problem also using the examples relating the proposed method with other’s methods such as Newton’s, Kou’s and Jarratt’s to show that the proposed method performs better. The conjugate maps for second-degree polynomial are verified. We also calculate the fixed points (extraneous). The article is completed with the study of basins of attraction, which support and further validate the theoretical and numerical results.
六阶等效牛顿法(CHN)的收敛性及其应用和动力学研究
我们开发了用于求解巴拿赫空间有值方程的六阶等值牛顿法(CHN)的局部收敛性。我们的分析方法有两种:第一种方法使用泰勒级数和高阶导数。第二种方法只使用一阶导数。我们通过求解一个边界值问题来检验理论结果,并使用与其他方法(如牛顿法、Kou 法和 Jarratt 法)相关的例子来说明所提出的方法性能更好。二级多项式的共轭映射也得到了验证。我们还计算了定点(无关点)。文章最后对吸引盆地进行了研究,从而支持并进一步验证了理论和数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信