{"title":"Electrical analysis of normal and aged high voltage transformer oil considering different size effects of Al2O3","authors":"M. Khodsuz, A. H. Mashhadzadeh, Aydin Samani","doi":"10.1108/wje-10-2023-0446","DOIUrl":null,"url":null,"abstract":"\nPurpose\nElectrical characteristics of transformer oil (TO) have been studied during normal and thermal aging conditions. In this paper, breakdown voltage (BDV), partial discharge (PD), heat transfer results and the physical mechanisms considering the impact of varying the diameter of Al2O3 nanoparticles (NPs) have been investigated. Different quantities of the two sizes of Al2O3 were added to the oil using a two-step method to determine the positive effect of NPs on the electrical and thermal properties of TO. Finally, the physical mechanisms related to the obtained experimental results have been performed.\n\n\nDesign/methodology/approach\nThe implementation of nanoparticles in this paper was provided by US Research Nanomaterials, Inc., USA. The provided Al2O3 NPs have an average particle size of 20–80 nm and a specific surface area of 138 and 58 m2/g, respectively, which have a purity of over 99%. Thermal aging has been done. The IEC 60156 standard has been implemented to calculate the BDV, and a 500-mL volume test cell (Apar TO 1020) has been used. PD test is performed according to Standard IEC 60343, and a JDEVS-PDMA 300 device was used for this test.\n\n\nFindings\nBDV tests indicate that 20 nm Al2O3 is more effective at improving BDV than 80 nm Al2O3, with an improvement of 113% compared to 99% for the latter. The analysis of Weibull probability at BDV indicates that 20 nm Al2O3 performs better, with improvements of 141%, 125% and 112% at probabilities of 1, 10 and 50%, respectively. The results of the PD tests using the PDPR pattern also show that 20 nm Al2O3 is superior. For the heat transfer test, 0.05 g/L of both diameters were used to ensure fair conditions, and again, the advantage was with 20 nm Al2O3 (23% vs 18%).\n\n\nOriginality/value\nThe effect of Al2O3 NP diameter (20 and 80 nm) on various properties of virgin and aged TO has been investigated experimentally in this paper to examine the effect of proposed NP on electrical improvement of TO.\n","PeriodicalId":509668,"journal":{"name":"World Journal of Engineering","volume":"10 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/wje-10-2023-0446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Electrical characteristics of transformer oil (TO) have been studied during normal and thermal aging conditions. In this paper, breakdown voltage (BDV), partial discharge (PD), heat transfer results and the physical mechanisms considering the impact of varying the diameter of Al2O3 nanoparticles (NPs) have been investigated. Different quantities of the two sizes of Al2O3 were added to the oil using a two-step method to determine the positive effect of NPs on the electrical and thermal properties of TO. Finally, the physical mechanisms related to the obtained experimental results have been performed.
Design/methodology/approach
The implementation of nanoparticles in this paper was provided by US Research Nanomaterials, Inc., USA. The provided Al2O3 NPs have an average particle size of 20–80 nm and a specific surface area of 138 and 58 m2/g, respectively, which have a purity of over 99%. Thermal aging has been done. The IEC 60156 standard has been implemented to calculate the BDV, and a 500-mL volume test cell (Apar TO 1020) has been used. PD test is performed according to Standard IEC 60343, and a JDEVS-PDMA 300 device was used for this test.
Findings
BDV tests indicate that 20 nm Al2O3 is more effective at improving BDV than 80 nm Al2O3, with an improvement of 113% compared to 99% for the latter. The analysis of Weibull probability at BDV indicates that 20 nm Al2O3 performs better, with improvements of 141%, 125% and 112% at probabilities of 1, 10 and 50%, respectively. The results of the PD tests using the PDPR pattern also show that 20 nm Al2O3 is superior. For the heat transfer test, 0.05 g/L of both diameters were used to ensure fair conditions, and again, the advantage was with 20 nm Al2O3 (23% vs 18%).
Originality/value
The effect of Al2O3 NP diameter (20 and 80 nm) on various properties of virgin and aged TO has been investigated experimentally in this paper to examine the effect of proposed NP on electrical improvement of TO.