A compact dual-feed wide-band slotted antenna for future wireless applications

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
D. Siva Sundhara Raja, D. Rajesh Kumar, N. Santhiyakumari, S. Kumarganesh, K. Martin Sagayam, B. Thiyaneswaran, Binay Kumar Pandey, Digvijay Pandey
{"title":"A compact dual-feed wide-band slotted antenna for future wireless applications","authors":"D. Siva Sundhara Raja,&nbsp;D. Rajesh Kumar,&nbsp;N. Santhiyakumari,&nbsp;S. Kumarganesh,&nbsp;K. Martin Sagayam,&nbsp;B. Thiyaneswaran,&nbsp;Binay Kumar Pandey,&nbsp;Digvijay Pandey","doi":"10.1007/s10470-023-02233-0","DOIUrl":null,"url":null,"abstract":"<div><p>Future 5G technology will have a high data rate and capacity as well as low latency in order to suit the needs of applications such as health care monitoring, smart cities, and smart homes. As a result, developing an antenna system with capable of spanning 5G spectrums while providing excellent radiating performance is critical. In this study, we suggest an antenna system that covers the 5G spectrum's awaited bandwidth. This article explains a low-profile, wide-band patch antenna with a consistent radiation pattern and polarization. To enhance the bandwidth, the design comprises two symmetrical inverted U slots and a tiny slot in the middle. To eliminate higher even-order modes, the antenna is activated by a differential feed. The suggested antenna achieves an impedance bandwidth of up to 31.3% when printed on a 0.80 mm thick FR4 substrate. The developed antenna has a frequency resonance range of 3.58–4.8 GHz and a reflection coefficient less than − 15 dB. With maximal co-polarization and low cross-polarization, consistent radiation characteristics are attained throughout the whole 1.22 GHz bandwidth. The many parameters that determine antenna performance are investigated and shown. The simulation of the proposed antenna is carried out using Keysight’s Advanced Design System. The constructed antenna is experimentally measured, and the experimental findings correspond well with the predicted results. It has been determined that a thin and compact differentially fed antenna offers improved performance, making it suitable for future 5G cellular applications.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"118 2","pages":"291 - 305"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02233-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Future 5G technology will have a high data rate and capacity as well as low latency in order to suit the needs of applications such as health care monitoring, smart cities, and smart homes. As a result, developing an antenna system with capable of spanning 5G spectrums while providing excellent radiating performance is critical. In this study, we suggest an antenna system that covers the 5G spectrum's awaited bandwidth. This article explains a low-profile, wide-band patch antenna with a consistent radiation pattern and polarization. To enhance the bandwidth, the design comprises two symmetrical inverted U slots and a tiny slot in the middle. To eliminate higher even-order modes, the antenna is activated by a differential feed. The suggested antenna achieves an impedance bandwidth of up to 31.3% when printed on a 0.80 mm thick FR4 substrate. The developed antenna has a frequency resonance range of 3.58–4.8 GHz and a reflection coefficient less than − 15 dB. With maximal co-polarization and low cross-polarization, consistent radiation characteristics are attained throughout the whole 1.22 GHz bandwidth. The many parameters that determine antenna performance are investigated and shown. The simulation of the proposed antenna is carried out using Keysight’s Advanced Design System. The constructed antenna is experimentally measured, and the experimental findings correspond well with the predicted results. It has been determined that a thin and compact differentially fed antenna offers improved performance, making it suitable for future 5G cellular applications.

Abstract Image

面向未来无线应用的紧凑型双馈电宽带开槽天线
未来的 5G 技术将具有高数据速率和容量以及低延迟的特点,以满足医疗监控、智慧城市和智能家居等应用的需求。因此,开发一种既能跨越 5G 频谱又能提供出色辐射性能的天线系统至关重要。在本研究中,我们提出了一种能覆盖 5G 频谱期待带宽的天线系统。本文介绍了一种具有一致辐射模式和极化的低剖面宽带贴片天线。为了增强带宽,设计包括两个对称的倒 U 型槽和一个位于中间的微小槽。为了消除较高的偶阶模式,天线采用了差分馈电。建议的天线在 0.80 毫米厚的 FR4 基板上印刷时,阻抗带宽高达 31.3%。开发的天线谐振频率范围为 3.58-4.8 GHz,反射系数小于 - 15 dB。由于具有最大的共极化和较低的交叉极化,因此在整个 1.22 GHz 带宽内都能获得一致的辐射特性。研究并展示了决定天线性能的众多参数。使用 Keysight 高级设计系统对所提议的天线进行了仿真。对构建的天线进行了实验测量,实验结果与预测结果十分吻合。实验结果表明,薄而紧凑的差分馈电天线具有更高的性能,适合未来的 5G 蜂窝应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信