{"title":"Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices","authors":"Xiuye Liu, Jianhua Zeng","doi":"10.1007/s11467-023-1370-7","DOIUrl":null,"url":null,"abstract":"<div><p>Periodic structures structured as photonic crystals and optical lattices are fascinating for nonlinear waves engineering in the optics and ultracold atoms communities. Moiré photonic and optical lattices — two-dimensional twisted patterns lie somewhere in between perfect periodic structures and aperiodic ones — are a new emerging investigative tool for studying nonlinear localized waves of diverse types. Herein, a theory of two-dimensional spatial localization in nonlinear periodic systems with fractional-order diffraction (linear nonlocality) and moiré optical lattices is investigated. Specifically, the flat-band feature is well preserved in shallow moiré optical lattices which, interact with the defocusing nonlinearity of the media, can support fundamental gap solitons, bound states composed of several fundamental solitons, and topological states (gap vortices) with vortex charge <i>s</i> = 1 and 2, all populated inside the finite gaps of the linear Bloch-wave spectrum. Employing the linear-stability analysis and direct perturbed simulations, the stability and instability properties of all the localized gap modes are surveyed, highlighting a wide stability region within the first gap and a limited one (to the central part) for the third gap. The findings enable insightful studies of highly localized gap modes in linear nonlocality (fractional) physical systems with shallow moiré patterns that exhibit extremely flat bands.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1370-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodic structures structured as photonic crystals and optical lattices are fascinating for nonlinear waves engineering in the optics and ultracold atoms communities. Moiré photonic and optical lattices — two-dimensional twisted patterns lie somewhere in between perfect periodic structures and aperiodic ones — are a new emerging investigative tool for studying nonlinear localized waves of diverse types. Herein, a theory of two-dimensional spatial localization in nonlinear periodic systems with fractional-order diffraction (linear nonlocality) and moiré optical lattices is investigated. Specifically, the flat-band feature is well preserved in shallow moiré optical lattices which, interact with the defocusing nonlinearity of the media, can support fundamental gap solitons, bound states composed of several fundamental solitons, and topological states (gap vortices) with vortex charge s = 1 and 2, all populated inside the finite gaps of the linear Bloch-wave spectrum. Employing the linear-stability analysis and direct perturbed simulations, the stability and instability properties of all the localized gap modes are surveyed, highlighting a wide stability region within the first gap and a limited one (to the central part) for the third gap. The findings enable insightful studies of highly localized gap modes in linear nonlocality (fractional) physical systems with shallow moiré patterns that exhibit extremely flat bands.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.