A critical probability for biclique partition of Gn,p

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tom Bohman , Jakob Hofstad
{"title":"A critical probability for biclique partition of Gn,p","authors":"Tom Bohman ,&nbsp;Jakob Hofstad","doi":"10.1016/j.jctb.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>The biclique partition number of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, denoted <span><math><mi>b</mi><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum number of pairwise edge disjoint complete bipartite subgraphs of <em>G</em> so that each edge of <em>G</em> belongs to exactly one of them. It is easy to see that <span><math><mi>b</mi><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximum size of an independent set of <em>G</em>. Erdős conjectured in the 80's that for almost every graph <em>G</em> equality holds; i.e., if <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> then <span><math><mi>b</mi><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with high probability. Alon showed that this is false. We show that the conjecture of Erdős <em>is</em> true if we instead take <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msub></math></span>, where <em>p</em> is constant and less than a certain threshold value <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mn>0.312</mn></math></span>. This verifies a conjecture of Chung and Peng for these values of <em>p</em>. We also show that if <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> then <span><math><mi>b</mi><mi>p</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>Θ</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mi>α</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msub><mo>)</mo></math></span> with high probability.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895623001132/pdfft?md5=71cf1c709b7b2b2915195f842dad39ba&pid=1-s2.0-S0095895623001132-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623001132","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The biclique partition number of a graph G=(V,E), denoted bp(G), is the minimum number of pairwise edge disjoint complete bipartite subgraphs of G so that each edge of G belongs to exactly one of them. It is easy to see that bp(G)nα(G), where α(G) is the maximum size of an independent set of G. Erdős conjectured in the 80's that for almost every graph G equality holds; i.e., if G=Gn,1/2 then bp(G)=nα(G) with high probability. Alon showed that this is false. We show that the conjecture of Erdős is true if we instead take G=Gn,p, where p is constant and less than a certain threshold value p00.312. This verifies a conjecture of Chung and Peng for these values of p. We also show that if p0<p<1/2 then bp(Gn,p)=n(1+Θ(1))α(Gn,p) with high probability.

Gn 的双斜分区临界概率 p
图 G=(V,E) 的双骰子分割数表示 bp(G),它是 G 的成对边缘相交的完整双骰子图的最小数目,这样 G 的每条边都正好属于其中之一。很容易看出,bp(G)≤n-α(G),其中α(G)是 G 的独立集的最大大小。埃尔德在上世纪 80 年代猜想,对于几乎所有的图 G 来说,等式都成立;也就是说,如果 G=Gn,1/2 那么 bp(G)=n-α(G) 的概率很高。阿隆证明了这是错误的。我们证明,如果我们取 G=Gn,p,其中 p 为常数且小于某个临界值 p0≈0.312,那么厄尔多斯的猜想就是真的。我们还证明,如果 p0<p<1/2,则 bp(Gn,p)=n-(1+Θ(1))α(Gn,p) 的概率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信