{"title":"A critical probability for biclique partition of Gn,p","authors":"Tom Bohman , Jakob Hofstad","doi":"10.1016/j.jctb.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>The biclique partition number of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, denoted <span><math><mi>b</mi><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum number of pairwise edge disjoint complete bipartite subgraphs of <em>G</em> so that each edge of <em>G</em> belongs to exactly one of them. It is easy to see that <span><math><mi>b</mi><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximum size of an independent set of <em>G</em>. Erdős conjectured in the 80's that for almost every graph <em>G</em> equality holds; i.e., if <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> then <span><math><mi>b</mi><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with high probability. Alon showed that this is false. We show that the conjecture of Erdős <em>is</em> true if we instead take <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msub></math></span>, where <em>p</em> is constant and less than a certain threshold value <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mn>0.312</mn></math></span>. This verifies a conjecture of Chung and Peng for these values of <em>p</em>. We also show that if <span><math><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> then <span><math><mi>b</mi><mi>p</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>Θ</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mi>α</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msub><mo>)</mo></math></span> with high probability.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"166 ","pages":"Pages 50-79"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895623001132/pdfft?md5=71cf1c709b7b2b2915195f842dad39ba&pid=1-s2.0-S0095895623001132-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623001132","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The biclique partition number of a graph , denoted , is the minimum number of pairwise edge disjoint complete bipartite subgraphs of G so that each edge of G belongs to exactly one of them. It is easy to see that , where is the maximum size of an independent set of G. Erdős conjectured in the 80's that for almost every graph G equality holds; i.e., if then with high probability. Alon showed that this is false. We show that the conjecture of Erdős is true if we instead take , where p is constant and less than a certain threshold value . This verifies a conjecture of Chung and Peng for these values of p. We also show that if then with high probability.
图 G=(V,E) 的双骰子分割数表示 bp(G),它是 G 的成对边缘相交的完整双骰子图的最小数目,这样 G 的每条边都正好属于其中之一。很容易看出,bp(G)≤n-α(G),其中α(G)是 G 的独立集的最大大小。埃尔德在上世纪 80 年代猜想,对于几乎所有的图 G 来说,等式都成立;也就是说,如果 G=Gn,1/2 那么 bp(G)=n-α(G) 的概率很高。阿隆证明了这是错误的。我们证明,如果我们取 G=Gn,p,其中 p 为常数且小于某个临界值 p0≈0.312,那么厄尔多斯的猜想就是真的。我们还证明,如果 p0<p<1/2,则 bp(Gn,p)=n-(1+Θ(1))α(Gn,p) 的概率很高。
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.