q-Supercongruences from Jackson's ϕ78 summation and Watson's ϕ78 transformation

IF 0.9 2区 数学 Q2 MATHEMATICS
Chuanan Wei
{"title":"q-Supercongruences from Jackson's ϕ78 summation and Watson's ϕ78 transformation","authors":"Chuanan Wei","doi":"10.1016/j.jcta.2023.105853","DOIUrl":null,"url":null,"abstract":"<div><p><em>q</em><span>-Supercongruences modulo the fifth and sixth powers of a cyclotomic polynomial are very rare in the literature. In this paper, we establish some </span><em>q</em>-supercongruences modulo the fifth and sixth powers of a cyclotomic polynomial in terms of Jackson's <span><math><mmultiscripts><mrow><mi>ϕ</mi></mrow><mrow><mn>7</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>8</mn></mrow><none></none></mmultiscripts></math></span><span> summation, Watson's </span><span><math><mmultiscripts><mrow><mi>ϕ</mi></mrow><mrow><mn>7</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>8</mn></mrow><none></none></mmultiscripts></math></span><span> transformation, the creative microscoping method recently introduced by Guo and Zudilin, and the Chinese remainder theorem for coprime polynomials. More concretely, we give a </span><em>q</em>-analogue of a nice formula due to Long and Ramakrishna [Adv. Math. 290 (2016), 773–808] and two <em>q</em>-supercongruences involving double series.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"204 ","pages":"Article 105853"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523001218","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

q-Supercongruences modulo the fifth and sixth powers of a cyclotomic polynomial are very rare in the literature. In this paper, we establish some q-supercongruences modulo the fifth and sixth powers of a cyclotomic polynomial in terms of Jackson's ϕ78 summation, Watson's ϕ78 transformation, the creative microscoping method recently introduced by Guo and Zudilin, and the Chinese remainder theorem for coprime polynomials. More concretely, we give a q-analogue of a nice formula due to Long and Ramakrishna [Adv. Math. 290 (2016), 773–808] and two q-supercongruences involving double series.

从杰克逊的ϕ78求和与沃森的ϕ78变换中得出的q-超级共轭关系
环状多项式的五次幂和六次幂的 q 上共轭在文献中非常罕见。在本文中,我们根据杰克逊的ϕ78求和、沃森的ϕ78变换、郭和祖迪林最近提出的创造性微分法以及中国余数定理,建立了一些环状多项式的五次和六次幂的 q 次共轭。更具体地说,我们给出了 Long 和 Ramakrishna [Adv. Math. 290 (2016), 773-808] 提出的一个漂亮公式的 q-analogue 以及两个涉及双数列的 q-supercongruences 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信