Fiery ice: An overview of methane hydrate combustion

IF 32 1区 工程技术 Q1 ENERGY & FUELS
D. Dunn-Rankin , Y.-C. Chien , T. Ueda , R. Ohmura
{"title":"Fiery ice: An overview of methane hydrate combustion","authors":"D. Dunn-Rankin ,&nbsp;Y.-C. Chien ,&nbsp;T. Ueda ,&nbsp;R. Ohmura","doi":"10.1016/j.pecs.2023.101111","DOIUrl":null,"url":null,"abstract":"<div><p>This article describes the combustion behavior of combustible gases as they are released from the clathrate cages of a hydrate. Gas hydrates (clathrates) are ice-like crystalline solids that encapsulate guest gas molecules. It has become known that a significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. There is great interest in this large fuel storehouse, particularly how to extract the methane from the clathrates. One of the unique features of methane clathrate is that it is flammable, despite being 85% water – fiery ice. While methane clathrates are the most prevalent in nature, other combustible gas hydrates (notably, propane and hydrogen) also have potential energy technology implications. In addition, carbon-dioxide hydrates have been proposed as a potential post-combustion greenhouse gas sequestration strategy, and there is a wide range of separation technologies and thermal management that take advantage of the unique thermodynamic and kinetic features of hydrate formation. To better understand the important implications of direct utilization of fuel clathrates and the related potential environmental consequences of CO<sub>2</sub> hydrates, we describe the state-of-the-art knowledge regarding the formation and structure of gas hydrates, and the combustion behavior of flammable gas hydrates. The combustion studies involve determining the rate of ice melt and water evaporation during the hydrate burn, as well as the interesting phenomenon of self-healing, where the hydrates stop burning by forming an ice sheet on their surface. Experimental results are used to estimate the heat transfer from the flame into the hydrate and to calculate the amount of energy released to sustain the flame. This article provides the reader with a comprehensive understanding of the basics and the subtleties of hydrates and their combustion, thereby explaining the true meaning of fiery ice.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"101 ","pages":"Article 101111"},"PeriodicalIF":32.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0360128523000412/pdfft?md5=c99c35ea99181c38f58d6c3e859d1476&pid=1-s2.0-S0360128523000412-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128523000412","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This article describes the combustion behavior of combustible gases as they are released from the clathrate cages of a hydrate. Gas hydrates (clathrates) are ice-like crystalline solids that encapsulate guest gas molecules. It has become known that a significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. There is great interest in this large fuel storehouse, particularly how to extract the methane from the clathrates. One of the unique features of methane clathrate is that it is flammable, despite being 85% water – fiery ice. While methane clathrates are the most prevalent in nature, other combustible gas hydrates (notably, propane and hydrogen) also have potential energy technology implications. In addition, carbon-dioxide hydrates have been proposed as a potential post-combustion greenhouse gas sequestration strategy, and there is a wide range of separation technologies and thermal management that take advantage of the unique thermodynamic and kinetic features of hydrate formation. To better understand the important implications of direct utilization of fuel clathrates and the related potential environmental consequences of CO2 hydrates, we describe the state-of-the-art knowledge regarding the formation and structure of gas hydrates, and the combustion behavior of flammable gas hydrates. The combustion studies involve determining the rate of ice melt and water evaporation during the hydrate burn, as well as the interesting phenomenon of self-healing, where the hydrates stop burning by forming an ice sheet on their surface. Experimental results are used to estimate the heat transfer from the flame into the hydrate and to calculate the amount of energy released to sustain the flame. This article provides the reader with a comprehensive understanding of the basics and the subtleties of hydrates and their combustion, thereby explaining the true meaning of fiery ice.

炽热的冰甲烷水合物燃烧概述
本文介绍了可燃气体从水合物的凝胶笼中释放出来时的燃烧行为。气体水合物(凝块)是包裹客气分子的冰状结晶固体。众所周知,海底和北极永久冻土层中的甲烷水合物是一个重要的甲烷储存库。人们对这一大型燃料库,特别是如何从凝胶体中提取甲烷非常感兴趣。甲烷凝块的一个独特特征是,尽管它 85% 是水--炽热的冰,但它是易燃的。虽然甲烷水合物在自然界中最为普遍,但其他可燃气体水合物(尤其是丙烷和氢)也具有潜在的能源技术意义。此外,二氧化碳水合物已被提出作为一种潜在的燃烧后温室气体封存策略,并且有多种分离技术和热管理方法可以利用水合物形成的独特热力学和动力学特征。为了更好地理解直接利用燃料凝块的重要意义以及二氧化碳水合物的相关潜在环境后果,我们介绍了有关气体水合物的形成和结构以及可燃气体水合物的燃烧行为的最新知识。燃烧研究包括确定水合物燃烧过程中冰的融化率和水的蒸发率,以及有趣的自愈现象,即水合物通过在其表面形成冰层而停止燃烧。实验结果用于估算从火焰到水合物的热量传递,并计算维持火焰所释放的能量。这篇文章让读者全面了解了水合物及其燃烧的基础知识和奥妙,从而解释了火冰的真正含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信