Exploring how metronome pacing at varying movement speeds influences local dynamic stability and coordination variability of lumbar spine motion during repetitive lifting
Dennis J. Larson , Elspeth Summers , Stephen H.M. Brown
{"title":"Exploring how metronome pacing at varying movement speeds influences local dynamic stability and coordination variability of lumbar spine motion during repetitive lifting","authors":"Dennis J. Larson , Elspeth Summers , Stephen H.M. Brown","doi":"10.1016/j.humov.2024.103178","DOIUrl":null,"url":null,"abstract":"<div><p><span>Auditory metronomes have been used to preserve movement consistency when examining local dynamic stability (LDS) and coordination variability (CV) of lumbar spine motion during repetitive movements. However, the potential influence of the metronome itself on these outcome measures has rarely been considered. Therefore, this study investigated the influence of different metronome paces (i.e., lifting speeds) on measures of lumbar spine LDS and thorax-pelvis CV during a repetitive lifting/lowering task in comparison to self-paced movements. Ten participants completed 5 repetitive lift/lower trials, where participants completed 35 consecutive repetitions (analysis on last 30 repetitions) at a self-selected pace for the first and last trial, and were paced by a 10 lift/min, 15 lift/min, and 20 lift/min metronome, in randomized order, for the remaining three trials. The average self-paced lift/lower speed before and after experiencing the three different metronome paced speeds was 16.2 (±1.02) and 17.2 (±0.73) lifts/min, respectively, and the most-preferred metronome pace trial was 15 lifts/min. Thorax-pelvis CV during the self-paced trials were similar (</span><em>p</em> > 0.05) to the 15 lift/min metronome paced trials, while greater thorax-pelvis CV was observed for the 10 lift/min compared to the 15 lift/min and 20 lift/min and second self-paced trial (all <em>p</em><span> < 0.026). This movement speed effect was not observed for lumbar spine LDS; however, more-dynamically stable movements were observed during all metronome paced trials in comparison to the self-paced trials. This study highlights that careful consideration is required when employing a metronome to control/manipulate movement characteristics while examining neuromuscular control using non-linear dynamical systems measures.</span></p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000010","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Auditory metronomes have been used to preserve movement consistency when examining local dynamic stability (LDS) and coordination variability (CV) of lumbar spine motion during repetitive movements. However, the potential influence of the metronome itself on these outcome measures has rarely been considered. Therefore, this study investigated the influence of different metronome paces (i.e., lifting speeds) on measures of lumbar spine LDS and thorax-pelvis CV during a repetitive lifting/lowering task in comparison to self-paced movements. Ten participants completed 5 repetitive lift/lower trials, where participants completed 35 consecutive repetitions (analysis on last 30 repetitions) at a self-selected pace for the first and last trial, and were paced by a 10 lift/min, 15 lift/min, and 20 lift/min metronome, in randomized order, for the remaining three trials. The average self-paced lift/lower speed before and after experiencing the three different metronome paced speeds was 16.2 (±1.02) and 17.2 (±0.73) lifts/min, respectively, and the most-preferred metronome pace trial was 15 lifts/min. Thorax-pelvis CV during the self-paced trials were similar (p > 0.05) to the 15 lift/min metronome paced trials, while greater thorax-pelvis CV was observed for the 10 lift/min compared to the 15 lift/min and 20 lift/min and second self-paced trial (all p < 0.026). This movement speed effect was not observed for lumbar spine LDS; however, more-dynamically stable movements were observed during all metronome paced trials in comparison to the self-paced trials. This study highlights that careful consideration is required when employing a metronome to control/manipulate movement characteristics while examining neuromuscular control using non-linear dynamical systems measures.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."