Ce Wang, Gang Feng, Jie Zhao, Yang Xu, Yang Li, Lin Wang, Meng Wang, Miao Liu, Yilin Wang, Hong Mu, Chunlei Zhou
{"title":"Screening of novel biomarkers for acute kidney transplant rejection using DIA-MS based proteomics.","authors":"Ce Wang, Gang Feng, Jie Zhao, Yang Xu, Yang Li, Lin Wang, Meng Wang, Miao Liu, Yilin Wang, Hong Mu, Chunlei Zhou","doi":"10.1002/prca.202300047","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Kidney transplantation is the preferred treatment for patients with end-stage renal disease. However, acute rejection poses a threat to the graft long-term survival. The aim of this study was to identify novel biomarkers to detect acute kidney transplant rejection.</p><p><strong>Methods: </strong>The serum proteomic profiling of kidney transplant patients with T cell-mediated acute rejection (TCMR) and stable allograft function (STA) was analyzed using data-independent acquisition mass spectrometry (DIA-MS). The differentially expressed proteins (DEPs) of interest were further verified by enzyme-linked immunosorbent assay (ELISA).</p><p><strong>Results: </strong>A total of 131 DEPs were identified between STA and TCMR patients, 114 DEPs were identified between mild and severe TCMR patients. The verification results showed that remarkable higher concentrations of serum amyloid A protein 1 (SAA1) and insulin like growth factor binding protein 2 (IGFBP2), and lower fetuin-A (AHSG) concentration were found in TCMR patients when compared with STA patients. We also found higher SAA1 concentration in severe TCMR group when compared with mild TCMR group. The receiver operating characteristics (ROC) analysis further confirmed that combination of SAA1, AHSG, and IGFBP2 had excellent performance in the acute rejection diagnosis.</p><p><strong>Conclusions: </strong>Our data demonstrated that serum SAA1, AHSG, and IGFBP2 could be effective biomarkers for diagnosing acute rejection after kidney transplantation. DIA-MS has great potential in biomarker screening of kidney transplantation.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":" ","pages":"e2300047"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.202300047","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Kidney transplantation is the preferred treatment for patients with end-stage renal disease. However, acute rejection poses a threat to the graft long-term survival. The aim of this study was to identify novel biomarkers to detect acute kidney transplant rejection.
Methods: The serum proteomic profiling of kidney transplant patients with T cell-mediated acute rejection (TCMR) and stable allograft function (STA) was analyzed using data-independent acquisition mass spectrometry (DIA-MS). The differentially expressed proteins (DEPs) of interest were further verified by enzyme-linked immunosorbent assay (ELISA).
Results: A total of 131 DEPs were identified between STA and TCMR patients, 114 DEPs were identified between mild and severe TCMR patients. The verification results showed that remarkable higher concentrations of serum amyloid A protein 1 (SAA1) and insulin like growth factor binding protein 2 (IGFBP2), and lower fetuin-A (AHSG) concentration were found in TCMR patients when compared with STA patients. We also found higher SAA1 concentration in severe TCMR group when compared with mild TCMR group. The receiver operating characteristics (ROC) analysis further confirmed that combination of SAA1, AHSG, and IGFBP2 had excellent performance in the acute rejection diagnosis.
Conclusions: Our data demonstrated that serum SAA1, AHSG, and IGFBP2 could be effective biomarkers for diagnosing acute rejection after kidney transplantation. DIA-MS has great potential in biomarker screening of kidney transplantation.
期刊介绍:
PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including:
-basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease
-the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers
-the use of proteomics for the discovery of novel drug targets
-the application of proteomics in the drug development pipeline
-the use of proteomics as a component of clinical trials.