{"title":"Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies.","authors":"Yan-Ruide Li, Tyler Halladay, Lili Yang","doi":"10.1186/s12929-024-00998-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-based immunotherapies (CBIs), notably exemplified by chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy, have emerged as groundbreaking approaches for cancer therapy. Nevertheless, akin to various other therapeutic modalities, tumor cells employ counterstrategies to manifest immune evasion, thereby circumventing the impact of CBIs. This phenomenon is facilitated by an intricately immunosuppression entrenched within the tumor microenvironment (TME). Principal mechanisms underpinning tumor immune evasion from CBIs encompass loss of antigens, downregulation of antigen presentation, activation of immune checkpoint pathways, initiation of anti-apoptotic cascades, and induction of immune dysfunction and exhaustion. In this review, we delve into the intrinsic mechanisms underlying the capacity of tumor cells to resist CBIs and proffer prospective stratagems to navigate around these challenges.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-00998-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell-based immunotherapies (CBIs), notably exemplified by chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy, have emerged as groundbreaking approaches for cancer therapy. Nevertheless, akin to various other therapeutic modalities, tumor cells employ counterstrategies to manifest immune evasion, thereby circumventing the impact of CBIs. This phenomenon is facilitated by an intricately immunosuppression entrenched within the tumor microenvironment (TME). Principal mechanisms underpinning tumor immune evasion from CBIs encompass loss of antigens, downregulation of antigen presentation, activation of immune checkpoint pathways, initiation of anti-apoptotic cascades, and induction of immune dysfunction and exhaustion. In this review, we delve into the intrinsic mechanisms underlying the capacity of tumor cells to resist CBIs and proffer prospective stratagems to navigate around these challenges.
期刊介绍:
The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.