Screening for Dyslexia in University Students: a Standardized Procedure Based on Conditional Inference Trees.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Eddy Cavalli, Hélène Brèthes, Elise Lefèvre, Abdessadek El Ahmadi, Lynne G Duncan, Maryse Bianco, Jean-Baptiste Melmi, Ambre Denis-Noël, Pascale Colé
{"title":"Screening for Dyslexia in University Students: a Standardized Procedure Based on Conditional Inference Trees.","authors":"Eddy Cavalli, Hélène Brèthes, Elise Lefèvre, Abdessadek El Ahmadi, Lynne G Duncan, Maryse Bianco, Jean-Baptiste Melmi, Ambre Denis-Noël, Pascale Colé","doi":"10.1093/arclin/acad103","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The focus of this study is on providing tools to enable researchers and practitioners to screen for dyslexia in adults entering university. The first aim is to validate and provide diagnostic properties for a set of seven tests including a 1-min word reading test, a 2-min pseudoword reading test, a phonemic awareness test, a spelling test, the Alouette reading fluency test, a connected-text reading fluency test, and the self-report Adult Reading History Questionnaire (ARHQ). The second, more general, aim of this study was to devise a standardized and confirmatory procedure for dyslexia screening from a subset of the initial seven tests. We used conditional inference tree analysis, a supervised machine learning approach to identify the most relevant tests, cut-off scores, and optimal order of test administration.</p><p><strong>Method: </strong>A combined sample of 60 university students with dyslexia (clinical validation group) and 65 university students without dyslexia (normative group) provided data to determine the diagnostic properties of these tests including sensitivity, specificity, and cut-off scores.</p><p><strong>Results: </strong>Results showed that combinations of four tests (ARHQ, text reading fluency, phonemic awareness, pseudoword reading) and their relative conditional cut-off scores optimize powerful discriminatory screening procedures for dyslexia, with an overall classification accuracy of approximately 90%.</p><p><strong>Conclusions: </strong>The novel use of the conditional inference tree methodology explored in the present study offered a way of moving toward a more efficient screening battery using only a subset of the seven tests examined. Both clinical and theoretical implications of these findings are discussed.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/arclin/acad103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The focus of this study is on providing tools to enable researchers and practitioners to screen for dyslexia in adults entering university. The first aim is to validate and provide diagnostic properties for a set of seven tests including a 1-min word reading test, a 2-min pseudoword reading test, a phonemic awareness test, a spelling test, the Alouette reading fluency test, a connected-text reading fluency test, and the self-report Adult Reading History Questionnaire (ARHQ). The second, more general, aim of this study was to devise a standardized and confirmatory procedure for dyslexia screening from a subset of the initial seven tests. We used conditional inference tree analysis, a supervised machine learning approach to identify the most relevant tests, cut-off scores, and optimal order of test administration.

Method: A combined sample of 60 university students with dyslexia (clinical validation group) and 65 university students without dyslexia (normative group) provided data to determine the diagnostic properties of these tests including sensitivity, specificity, and cut-off scores.

Results: Results showed that combinations of four tests (ARHQ, text reading fluency, phonemic awareness, pseudoword reading) and their relative conditional cut-off scores optimize powerful discriminatory screening procedures for dyslexia, with an overall classification accuracy of approximately 90%.

Conclusions: The novel use of the conditional inference tree methodology explored in the present study offered a way of moving toward a more efficient screening battery using only a subset of the seven tests examined. Both clinical and theoretical implications of these findings are discussed.

大学生阅读障碍筛查:基于条件推理树的标准化程序。
研究目的本研究的重点是提供工具,使研究人员和从业人员能够对进入大学的成年人进行阅读障碍筛查。第一个目的是验证并提供七项测试的诊断属性,包括 1 分钟单词阅读测试、2 分钟伪单词阅读测试、音位意识测试、拼写测试、Alouette 阅读流畅性测试、连接文本阅读流畅性测试和自我报告的成人阅读史问卷(ARHQ)。本研究的第二个更具普遍性的目的是,从最初的七项测试中挑选出一部分,设计出一套标准化的诵读困难筛查确认程序。我们使用了条件推理树分析这种有监督的机器学习方法来确定最相关的测试、临界分数和最佳测试施测顺序:由 60 名患有阅读障碍的大学生(临床验证组)和 65 名无阅读障碍的大学生(常模组)组成的综合样本为确定这些测试的诊断属性(包括灵敏度、特异性和临界分数)提供了数据:结果表明,四种测试(ARHQ、文本阅读流利度、音位意识、假词阅读)的组合及其相对条件临界值优化了对阅读障碍的强大鉴别筛选程序,总体分类准确率约为 90%:本研究中探索的条件推理树方法的新颖使用,提供了一种仅使用所研究的七种测试中的一个子集就能实现更有效筛查的方法。本文讨论了这些发现的临床和理论意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信