Controllable synthesis of uniform flower-shaped covalent organic framework microspheres as absorbent for solid-phase extraction of trace 2,4-dichlorophenol
{"title":"Controllable synthesis of uniform flower-shaped covalent organic framework microspheres as absorbent for solid-phase extraction of trace 2,4-dichlorophenol","authors":"Guangping Xia, Haoyun Hu, Yipeng Huang, Guihua Ruan","doi":"10.1007/s00604-024-06178-7","DOIUrl":null,"url":null,"abstract":"<div><p>Controllable synthesis of micro-flower covalent organic frameworks (MFCOFs) with controllable size, monodisperse, spherical, and beautiful flower shape was realized by using 2,5-diformylfuran (DFF) and p-phenylenediamine (p-PDA) as building blocks at room temperature. High-quality MFCOFs (5 − 7 μm) were synthesized by controlling the kind of solvent, amounts of monomers, catalyst content, and reaction time. The synthesized MFCOFs possessed uniform mesopores deriving from the intrinsic pores of frameworks and wide-distributed pores belonging to the gap between the petals. The MFCOFs-packed solid-phase extraction (SPE) column shows adsorption capacity of about 8.85 mg g<sup>−1</sup> for 2,4-dichlorophenol (2,4-DCP). The MFCOF-based SPE combined with the HPLC method was established for the determination of 2,4-DCP in environmental water. The linear range of this method is 20–1000 ng mL<sup>−1</sup> (<i>R</i><sup>2</sup> > 0.9994), and limit of detection (S/N = 3) is 10.9 ng mL<sup>−1</sup>. Spiked recoveries were 94.3–98.5% with relative standard deviations lower than 2.3%.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 2","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06178-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Controllable synthesis of micro-flower covalent organic frameworks (MFCOFs) with controllable size, monodisperse, spherical, and beautiful flower shape was realized by using 2,5-diformylfuran (DFF) and p-phenylenediamine (p-PDA) as building blocks at room temperature. High-quality MFCOFs (5 − 7 μm) were synthesized by controlling the kind of solvent, amounts of monomers, catalyst content, and reaction time. The synthesized MFCOFs possessed uniform mesopores deriving from the intrinsic pores of frameworks and wide-distributed pores belonging to the gap between the petals. The MFCOFs-packed solid-phase extraction (SPE) column shows adsorption capacity of about 8.85 mg g−1 for 2,4-dichlorophenol (2,4-DCP). The MFCOF-based SPE combined with the HPLC method was established for the determination of 2,4-DCP in environmental water. The linear range of this method is 20–1000 ng mL−1 (R2 > 0.9994), and limit of detection (S/N = 3) is 10.9 ng mL−1. Spiked recoveries were 94.3–98.5% with relative standard deviations lower than 2.3%.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.