{"title":"Unlocking the local structure of hard carbon to grasp sodium-ion diffusion behavior for advanced sodium-ion batteries†","authors":"Xin Feng, Yu Li, Ying Li, Mingquan Liu, Lumin Zheng, Yuteng Gong, Ripeng Zhang, Feng Wu, Chuan Wu and Ying Bai","doi":"10.1039/D3EE03347C","DOIUrl":null,"url":null,"abstract":"<p >Clarifying the microstructure of hard carbon is essential to reveal its sodium storage mechanism and to develop hard carbon negative electrodes for high-performance sodium ion batteries. Currently, although various sodium storage mechanisms for hard carbon models are proposed, they are still controversial. Besides, the puzzling and abnormal variation of a Na<small><sup>+</sup></small> diffusion coefficient during the discharge process cannot be well explained. Inspired by amorphous alloys, we propose and confirm the dispersion region at the junction between amorphous structures and graphite microcrystals, which is closely related to the structure of graphite microcrystals. The special dispersion region plays a buffer role in the sodium ion diffusion process and provides satisfactory storage capacity. Therefore, the effect of synthesis conditions on the local structure in the dispersion region should be considered when designing hard carbon. In this work, a specific graphite microcrystalline structure of hard carbon is precisely synthesized by screening organic molecules, and the constraint relationship between the parameters of the graphite microcrystalline structure is revealed. Importantly, this work is of great significance for resolving the current controversy about the sodium storage mechanism and making clear the anomalies of sodium ion diffusion in the low-voltage interval (<0.1 V) in hard carbon.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 4","pages":" 1387-1396"},"PeriodicalIF":30.8000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d3ee03347c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Clarifying the microstructure of hard carbon is essential to reveal its sodium storage mechanism and to develop hard carbon negative electrodes for high-performance sodium ion batteries. Currently, although various sodium storage mechanisms for hard carbon models are proposed, they are still controversial. Besides, the puzzling and abnormal variation of a Na+ diffusion coefficient during the discharge process cannot be well explained. Inspired by amorphous alloys, we propose and confirm the dispersion region at the junction between amorphous structures and graphite microcrystals, which is closely related to the structure of graphite microcrystals. The special dispersion region plays a buffer role in the sodium ion diffusion process and provides satisfactory storage capacity. Therefore, the effect of synthesis conditions on the local structure in the dispersion region should be considered when designing hard carbon. In this work, a specific graphite microcrystalline structure of hard carbon is precisely synthesized by screening organic molecules, and the constraint relationship between the parameters of the graphite microcrystalline structure is revealed. Importantly, this work is of great significance for resolving the current controversy about the sodium storage mechanism and making clear the anomalies of sodium ion diffusion in the low-voltage interval (<0.1 V) in hard carbon.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).