Lucile Magnier, Garance Cossard, Vincent Martin, Céline Pascal, Virginie Roche, Eric Sibert, Irina Shchedrina, Richard Bousquet, Valérie Parry, Marian Chatenet
{"title":"Fe–Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media","authors":"Lucile Magnier, Garance Cossard, Vincent Martin, Céline Pascal, Virginie Roche, Eric Sibert, Irina Shchedrina, Richard Bousquet, Valérie Parry, Marian Chatenet","doi":"10.1038/s41563-023-01744-5","DOIUrl":null,"url":null,"abstract":"NiFe-based oxo-hydroxides are highly active for the oxygen evolution reaction but require complex synthesis and are poorly durable when deposited on foreign supports. Herein we demonstrate that easily processable, Earth-abundant and cheap Fe–Ni alloys spontaneously develop a highly active NiFe oxo-hydroxide surface, exsolved upon electrochemical activation. While the manufacturing process and the initial surface state of the alloys do not impact the oxygen evolution reaction performance, the growth/composition of the NiFe oxo-hydroxide surface layer depends on the alloying elements and initial atomic Fe/Ni ratio, hence driving oxygen evolution reaction activity. Whatever the initial Fe/Ni ratio of the Fe–Ni alloy (varying between 0.004 and 7.4), the best oxygen evolution reaction performance (beyond that of commercial IrO2) and durability was obtained for a surface Fe/Ni ratio between 0.2 and 0.4 and includes numerous active sites (high NiIII/NiII capacitive response) and high efficiency (high Fe/Ni ratio). This knowledge paves the way to active and durable Fe–Ni alloy oxygen-evolving electrodes for alkaline water electrolysers. NiFe-based oxo-hydroxides are active for the oxygen evolution reaction but suffer from complex synthesis and durability when deposited. Easily processable Fe–Ni alloys with a highly active oxo-hydroxide surface are now shown to pave the way for oxygen-evolving electrodes for alkaline water electrolysers.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 2","pages":"252-261"},"PeriodicalIF":37.2000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-023-01744-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
NiFe-based oxo-hydroxides are highly active for the oxygen evolution reaction but require complex synthesis and are poorly durable when deposited on foreign supports. Herein we demonstrate that easily processable, Earth-abundant and cheap Fe–Ni alloys spontaneously develop a highly active NiFe oxo-hydroxide surface, exsolved upon electrochemical activation. While the manufacturing process and the initial surface state of the alloys do not impact the oxygen evolution reaction performance, the growth/composition of the NiFe oxo-hydroxide surface layer depends on the alloying elements and initial atomic Fe/Ni ratio, hence driving oxygen evolution reaction activity. Whatever the initial Fe/Ni ratio of the Fe–Ni alloy (varying between 0.004 and 7.4), the best oxygen evolution reaction performance (beyond that of commercial IrO2) and durability was obtained for a surface Fe/Ni ratio between 0.2 and 0.4 and includes numerous active sites (high NiIII/NiII capacitive response) and high efficiency (high Fe/Ni ratio). This knowledge paves the way to active and durable Fe–Ni alloy oxygen-evolving electrodes for alkaline water electrolysers. NiFe-based oxo-hydroxides are active for the oxygen evolution reaction but suffer from complex synthesis and durability when deposited. Easily processable Fe–Ni alloys with a highly active oxo-hydroxide surface are now shown to pave the way for oxygen-evolving electrodes for alkaline water electrolysers.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.