Arlene M. Fiore, Loretta J. Mickley, Qindan Zhu, Colleen B. Baublitz
{"title":"Climate and Tropospheric Oxidizing Capacity","authors":"Arlene M. Fiore, Loretta J. Mickley, Qindan Zhu, Colleen B. Baublitz","doi":"10.1146/annurev-earth-032320-090307","DOIUrl":null,"url":null,"abstract":"The hydroxyl radical (OH) largely controls the tropospheric self-cleansing capacity by reacting with gases harmful to the environment and human health. OH concentrations are determined locally by competing production and loss processes. Lacking strong observational constraints, models differ in how they balance these processes, such that the sign of past and future OH changes is uncertain. In a warmer climate, OH production will increase due to its water vapor dependence, partially offset by faster OH-methane loss. Weather-sensitive emissions will also likely increase, although their net impact on global mean OH depends on the balance between source (nitrogen oxides) and sink (reactive carbon) gases. Lightning activity increases OH, but its response to climate warming is of uncertain sign. To enable confident projections of OH, we recommend efforts to reduce uncertainties in kinetic reactions, in measured and modeled OH, in proxies for past OH concentrations, and in source and sink gas emissions. ▪ OH is strongly modulated by internal climate variability despite its lifetime of a few seconds at most, with implications for interpreting trends in methane. ▪ Improved kinetic constraints on key reactions would strengthen confidence in regional and global OH budgets, and in the response of OH to climate change. ▪ Future OH changes will depend on uncertain and compensating processes involving weather-sensitive chemistry and emissions, plus human choices. ▪ Technological solutions to climate change will likely impact tropospheric oxidizing capacity and merit further study prior to implementation.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"110 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-032320-090307","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The hydroxyl radical (OH) largely controls the tropospheric self-cleansing capacity by reacting with gases harmful to the environment and human health. OH concentrations are determined locally by competing production and loss processes. Lacking strong observational constraints, models differ in how they balance these processes, such that the sign of past and future OH changes is uncertain. In a warmer climate, OH production will increase due to its water vapor dependence, partially offset by faster OH-methane loss. Weather-sensitive emissions will also likely increase, although their net impact on global mean OH depends on the balance between source (nitrogen oxides) and sink (reactive carbon) gases. Lightning activity increases OH, but its response to climate warming is of uncertain sign. To enable confident projections of OH, we recommend efforts to reduce uncertainties in kinetic reactions, in measured and modeled OH, in proxies for past OH concentrations, and in source and sink gas emissions. ▪ OH is strongly modulated by internal climate variability despite its lifetime of a few seconds at most, with implications for interpreting trends in methane. ▪ Improved kinetic constraints on key reactions would strengthen confidence in regional and global OH budgets, and in the response of OH to climate change. ▪ Future OH changes will depend on uncertain and compensating processes involving weather-sensitive chemistry and emissions, plus human choices. ▪ Technological solutions to climate change will likely impact tropospheric oxidizing capacity and merit further study prior to implementation.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.