Halogen Cycling in the Solid Earth

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS
Mark A. Kendrick
{"title":"Halogen Cycling in the Solid Earth","authors":"Mark A. Kendrick","doi":"10.1146/annurev-earth-031621-111700","DOIUrl":null,"url":null,"abstract":"Each of the halogens constrains a different aspect of volatile cycling in the solid Earth. F is moderately incompatible in the mantle and has a low mobility at Earth's surface, meaning that it is preferentially retained in the mantle and continental crust. In contrast, Cl, Br, and I are strongly incompatible and highly soluble. Chloride is the dominant anion in seawater and many geofluids and a major component of evaporite minerals. Br and I are essential for life and significantly incorporated into organic matter that accumulates in marine sediments. Surficial fluids circulated into continental and oceanic crust incorporate surface-derived halogens into alteration minerals. As a result, subducting slabs and arc lavas are weakly enriched in F and strongly enriched in Cl, Br, and I. Subduction has maintained mantle Cl and Br concentrations at relatively constant levels since Earth's early differentiation, but mantle I/Cl has decreased over time. ▪ Halogen abundances on the early Earth were affected by I partitioning into Earth's core and possible loss of hydrophilic Cl, Br, and I in an early formed ocean. ▪ Halogens are powerful tracers of subduction zone processes on the modern Earth, with Cl, Br, and I having a dominantly subducted origin in Earth's mantle. ▪ The deep subduction cycles of Cl, Br, and I are more similar to that of H<jats:sub>2</jats:sub>O than they are to F, but the geochemical cycle of each halogen differs in detail. ▪ Halogen abundance ratios and stable isotope ratios vary systematically in Earth's surface reservoirs, meaning that halogens are powerful tracers of geological fluids and melts.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"86 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-031621-111700","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Each of the halogens constrains a different aspect of volatile cycling in the solid Earth. F is moderately incompatible in the mantle and has a low mobility at Earth's surface, meaning that it is preferentially retained in the mantle and continental crust. In contrast, Cl, Br, and I are strongly incompatible and highly soluble. Chloride is the dominant anion in seawater and many geofluids and a major component of evaporite minerals. Br and I are essential for life and significantly incorporated into organic matter that accumulates in marine sediments. Surficial fluids circulated into continental and oceanic crust incorporate surface-derived halogens into alteration minerals. As a result, subducting slabs and arc lavas are weakly enriched in F and strongly enriched in Cl, Br, and I. Subduction has maintained mantle Cl and Br concentrations at relatively constant levels since Earth's early differentiation, but mantle I/Cl has decreased over time. ▪ Halogen abundances on the early Earth were affected by I partitioning into Earth's core and possible loss of hydrophilic Cl, Br, and I in an early formed ocean. ▪ Halogens are powerful tracers of subduction zone processes on the modern Earth, with Cl, Br, and I having a dominantly subducted origin in Earth's mantle. ▪ The deep subduction cycles of Cl, Br, and I are more similar to that of H2O than they are to F, but the geochemical cycle of each halogen differs in detail. ▪ Halogen abundance ratios and stable isotope ratios vary systematically in Earth's surface reservoirs, meaning that halogens are powerful tracers of geological fluids and melts.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
固体地球中的卤素循环
每种卤素都对固体地球中的挥发循环有不同方面的影响。F 在地幔中具有中度不相容性,在地球表面的流动性较低,这意味着它优先保留在地幔和大陆地壳中。相比之下,Cl、Br 和 I 具有强烈的不相容性和高溶解性。氯化物是海水和许多地球流体中的主要阴离子,也是蒸发岩矿物的主要成分。溴和碘是生命所必需的,并大量融入海洋沉积物中积累的有机物中。循环到大陆和大洋地壳中的地表流体将地表衍生的卤素纳入蚀变矿物中。因此,俯冲板块和弧状熔岩中 F 的富集程度较低,而 Cl、Br 和 I 的富集程度较高。自地球早期分异以来,俯冲作用使地幔中 Cl 和 Br 的富集程度保持在相对稳定的水平,但地幔中 I/Cl 的富集程度则随着时间的推移而降低。早期地球上的卤素丰度受到 I 分入地核以及早期形成的海洋中亲水性 Cl、Br 和 I 可能流失的影响。卤素是现代地球俯冲带过程的强大示踪剂,Cl、Br 和 I 主要来源于地球地幔的俯冲。与 F 相比,Cl、Br 和 I 的深俯冲周期与 H2O 更为相似,但每种卤素的地球化学周期在细节上都有所不同。卤素丰度比和稳定同位素比在地球表面储层中有系统地变化,这意味着卤素是地质流体和熔体的强大示踪剂。《地球与行星科学年刊》第 52 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信