Yi-Hsien Wu, Leon C. Camenzind, Akito Noiri, Kenta Takeda, Takashi Nakajima, Takashi Kobayashi, Chien-Yuan Chang, Amir Sammak, Giordano Scappucci, Hsi-Sheng Goan, Seigo Tarucha
{"title":"Hamiltonian phase error in resonantly driven CNOT gate above the fault-tolerant threshold","authors":"Yi-Hsien Wu, Leon C. Camenzind, Akito Noiri, Kenta Takeda, Takashi Nakajima, Takashi Kobayashi, Chien-Yuan Chang, Amir Sammak, Giordano Scappucci, Hsi-Sheng Goan, Seigo Tarucha","doi":"10.1038/s41534-023-00802-9","DOIUrl":null,"url":null,"abstract":"<p>Because of their long coherence time and compatibility with industrial foundry processes, electron spin qubits are a promising platform for scalable quantum processors. A full-fledged quantum computer will need quantum error correction, which requires high-fidelity quantum gates. Analyzing and mitigating gate errors are useful to improve gate fidelity. Here, we demonstrate a simple yet reliable calibration procedure for a high-fidelity controlled-rotation gate in an exchange-always-on Silicon quantum processor, allowing operation above the fault-tolerance threshold of quantum error correction. We find that the fidelity of our uncalibrated controlled-rotation gate is limited by coherent errors in the form of controlled phases and present a method to measure and correct these phase errors. We then verify the improvement in our gate fidelities by randomized benchmark and gate-set tomography protocols. Finally, we use our phase correction protocol to implement a virtual, high-fidelity, controlled-phase gate.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"97 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-023-00802-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Because of their long coherence time and compatibility with industrial foundry processes, electron spin qubits are a promising platform for scalable quantum processors. A full-fledged quantum computer will need quantum error correction, which requires high-fidelity quantum gates. Analyzing and mitigating gate errors are useful to improve gate fidelity. Here, we demonstrate a simple yet reliable calibration procedure for a high-fidelity controlled-rotation gate in an exchange-always-on Silicon quantum processor, allowing operation above the fault-tolerance threshold of quantum error correction. We find that the fidelity of our uncalibrated controlled-rotation gate is limited by coherent errors in the form of controlled phases and present a method to measure and correct these phase errors. We then verify the improvement in our gate fidelities by randomized benchmark and gate-set tomography protocols. Finally, we use our phase correction protocol to implement a virtual, high-fidelity, controlled-phase gate.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.