{"title":"Dynamic fluorescence molecular tomography metabolic parameters solution based on problem decomposition and prior refactor","authors":"Xiao Wei, Hongbo Guo, Yizhe Zhao, Beilei Wang, Jingjing Yu, Xiaowei He","doi":"10.1002/jbio.202300445","DOIUrl":null,"url":null,"abstract":"<p>Dynamic fluorescence molecular tomography (DFMT), as a noninvasive optical imaging method, can quantify metabolic parameters of living animal organs and assist in the diagnosis of metabolic diseases. However, existing DFMT methods do not have a high capacity to reconstruct abnormal metabolic regions, and require additional prior information and complicated solution methods. This paper introduces a problem decomposition and prior refactor (PDPR) method. The PDPR decomposes the metabolic parameters into two kinds of problems depending on their temporal coupling, which are solved using regularization and parameter fitting. Moreover, PDPR introduces the idea of divide-and-conquer to refactor prior information to ensure discrimination between metabolic abnormal regions and normal tissues. Experimental results show that PDPR is capable of separating abnormal metabolic regions of the liver and has the potential to quantify metabolic parameters and diagnose liver metabolic diseases in small animals.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300445","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic fluorescence molecular tomography (DFMT), as a noninvasive optical imaging method, can quantify metabolic parameters of living animal organs and assist in the diagnosis of metabolic diseases. However, existing DFMT methods do not have a high capacity to reconstruct abnormal metabolic regions, and require additional prior information and complicated solution methods. This paper introduces a problem decomposition and prior refactor (PDPR) method. The PDPR decomposes the metabolic parameters into two kinds of problems depending on their temporal coupling, which are solved using regularization and parameter fitting. Moreover, PDPR introduces the idea of divide-and-conquer to refactor prior information to ensure discrimination between metabolic abnormal regions and normal tissues. Experimental results show that PDPR is capable of separating abnormal metabolic regions of the liver and has the potential to quantify metabolic parameters and diagnose liver metabolic diseases in small animals.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.