Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: a comprehensive review.

IF 3 Q2 PHARMACOLOGY & PHARMACY
Therapeutic delivery Pub Date : 2024-02-01 Epub Date: 2024-01-12 DOI:10.4155/tde-2023-0116
Pavithra Kothapalli, Manimaran Vasanthan
{"title":"Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: a comprehensive review.","authors":"Pavithra Kothapalli, Manimaran Vasanthan","doi":"10.4155/tde-2023-0116","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive compounds derived from plants have been investigated for treating various pathological conditions. However, the utilization of these compounds has challenges such as instability, low solubility and bioavailability. To overcome these challenges, the encapsulation of bioactive molecules with in a novel nano carrier system enabling effective delivery and clinical translation has become essential. Lipid-based nanocarriers provide versatile platforms for encapsulating and delivering bioactive compounds and overcome the challenges. These novel carriers can improve solubility, stability, improved drug retention and therapeutic efficacy of plant derived bioactive compounds. The current review evaluates the challenges in delivery of plant bioactives and highlights the potential of various lipid-based nano carriers designed to improve its therapeutic efficacy.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"135-155"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/tde-2023-0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioactive compounds derived from plants have been investigated for treating various pathological conditions. However, the utilization of these compounds has challenges such as instability, low solubility and bioavailability. To overcome these challenges, the encapsulation of bioactive molecules with in a novel nano carrier system enabling effective delivery and clinical translation has become essential. Lipid-based nanocarriers provide versatile platforms for encapsulating and delivering bioactive compounds and overcome the challenges. These novel carriers can improve solubility, stability, improved drug retention and therapeutic efficacy of plant derived bioactive compounds. The current review evaluates the challenges in delivery of plant bioactives and highlights the potential of various lipid-based nano carriers designed to improve its therapeutic efficacy.

基于脂质的纳米载体用于增强植物生物活性分子的递送:全面综述。
从植物中提取的生物活性化合物已被研究用于治疗各种病症。然而,利用这些化合物面临着不稳定、低溶解度和生物利用率等挑战。为了克服这些挑战,将生物活性分子封装在新型纳米载体系统中以实现有效递送和临床转化已变得至关重要。脂质纳米载体为封装和递送生物活性化合物提供了多功能平台,并克服了这些挑战。这些新型载体可以提高植物提取的生物活性化合物的溶解度、稳定性、药物保留率和疗效。本综述评估了植物生物活性物质在递送过程中面临的挑战,并重点介绍了各种脂质纳米载体在提高疗效方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Therapeutic delivery
Therapeutic delivery PHARMACOLOGY & PHARMACY-
CiteScore
5.50
自引率
0.00%
发文量
25
期刊介绍: Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信