{"title":"Nanostructured Lipid Carrier-loaded <i>In Situ</i> Gel for Ophthalmic Drug Delivery: Preparation and <i>In Vitro</i> Characterization Studies.","authors":"Vidya Sabale, Vaishnavi Belokar, Manasi Jiwankar, Prafulla Sabale","doi":"10.2174/0122117385266639231029192409","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nanostructured lipid carriers (NLCs) are explored as vehicles for ophthalmic drug delivery owing to their better drug loading, good permeation, and satisfactory safety profile.</p><p><strong>Objectives: </strong>The purpose of the study was to fabricate and characterize an <i>in situ</i> ocular gel of loratadine as a model drug based on NLCs to enhance the drug residence time.</p><p><strong>Methods: </strong>NLCs were fabricated using the microemulsion method in which solid lipid as Compritol 888 ATO, lipid as oleic acid, surfactant as Tween 80, and isopropyl alcohol as co-surfactant as alcohol were used. Based on the evaluation of formulation batches of NLCs, the optimized batch was selected and further utilized for the formulation of <i>in situ gel</i> containing Carbopol 934 and HPMC K15M as gelling agents, and characterized Results: The optimized NLCs of loratadine exhibited entrapment efficiency of 83.13 ± 0.13% and an average particle size of 18.98 ± 1.22 nm. Drug content and drug release were found to be 98.67 and 92.48%, respectively. Excellent rheology and mucoadhesion were demonstrated by the loratadine NLC-loaded <i>in situ gel</i> to enhance its attachment to the mucosa. NLC-based <i>in situ</i> ocular gel showed the desired results for topical administration. The prepared gel was observed to be non-irritating to the eye.</p><p><strong>Conclusion: </strong>The optimized NLC-based <i>in situ </i>gel formulation presented better corneal retention and it was found to be stable, offering sustained release of the drug. Thus, the joined system of sol-gel was found promising for ophthalmic drug delivery.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"171-183"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385266639231029192409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nanostructured lipid carriers (NLCs) are explored as vehicles for ophthalmic drug delivery owing to their better drug loading, good permeation, and satisfactory safety profile.
Objectives: The purpose of the study was to fabricate and characterize an in situ ocular gel of loratadine as a model drug based on NLCs to enhance the drug residence time.
Methods: NLCs were fabricated using the microemulsion method in which solid lipid as Compritol 888 ATO, lipid as oleic acid, surfactant as Tween 80, and isopropyl alcohol as co-surfactant as alcohol were used. Based on the evaluation of formulation batches of NLCs, the optimized batch was selected and further utilized for the formulation of in situ gel containing Carbopol 934 and HPMC K15M as gelling agents, and characterized Results: The optimized NLCs of loratadine exhibited entrapment efficiency of 83.13 ± 0.13% and an average particle size of 18.98 ± 1.22 nm. Drug content and drug release were found to be 98.67 and 92.48%, respectively. Excellent rheology and mucoadhesion were demonstrated by the loratadine NLC-loaded in situ gel to enhance its attachment to the mucosa. NLC-based in situ ocular gel showed the desired results for topical administration. The prepared gel was observed to be non-irritating to the eye.
Conclusion: The optimized NLC-based in situ gel formulation presented better corneal retention and it was found to be stable, offering sustained release of the drug. Thus, the joined system of sol-gel was found promising for ophthalmic drug delivery.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.