{"title":"Optimization of a recombinant BlaR-CTD protein formulation using the response surface methodology.","authors":"Mohadeseh Haji Abdolvahab, Mojdeh Safari, Farkhonde Hasannejad, Nika Asefi, Alireza Salimi, Mahboobeh Nazari","doi":"10.1186/s13036-023-00399-9","DOIUrl":null,"url":null,"abstract":"<p><p>The sequence of a carboxy-terminal of the β-lactam sensor-transducer protein (BlaR-CTD) from Bacillus licheniformis ATCC14580 was extracted from US7745193B2 patent and expressed in E. coli using pColdI vector as a soluble His-tag recombinant protein. In this study, several excipients were used to improve the stability of recombinant BlaR-CTD and obtain the optimal formulation for this protein using response surface methodology (RSM)/ Central Composite Design (CCD). Total protein concentration was measured by UV spectroscopy and the Bradford test. A total of 7 various factors were designed using four different excipients including Glycerol, Sucrose, Triton x-100, and Tween-20, and three different buffers like Tris, Borate, and PBS. By obtaining suitable excipients and buffer i.e. glycerol and sucrose, pH ranging from 7 to 9 were evaluated. The pH 7.62, glycerol 15.35%, and sucrose 152.52 mM were determined as the most suitable for improving the thermal stability of recombinant BlaR-CTD.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"4"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-023-00399-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The sequence of a carboxy-terminal of the β-lactam sensor-transducer protein (BlaR-CTD) from Bacillus licheniformis ATCC14580 was extracted from US7745193B2 patent and expressed in E. coli using pColdI vector as a soluble His-tag recombinant protein. In this study, several excipients were used to improve the stability of recombinant BlaR-CTD and obtain the optimal formulation for this protein using response surface methodology (RSM)/ Central Composite Design (CCD). Total protein concentration was measured by UV spectroscopy and the Bradford test. A total of 7 various factors were designed using four different excipients including Glycerol, Sucrose, Triton x-100, and Tween-20, and three different buffers like Tris, Borate, and PBS. By obtaining suitable excipients and buffer i.e. glycerol and sucrose, pH ranging from 7 to 9 were evaluated. The pH 7.62, glycerol 15.35%, and sucrose 152.52 mM were determined as the most suitable for improving the thermal stability of recombinant BlaR-CTD.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.