Munki Jeong, Euitaek Jung, Sukjin Oh, Soon Young Shin
{"title":"Homeobox Protein PROX1 Expression is Negatively Regulated by Histone Deacetylase 1 and c-JUN Complex in MDA-MB-231 Human Breast Cancer Cells.","authors":"Munki Jeong, Euitaek Jung, Sukjin Oh, Soon Young Shin","doi":"10.14712/fb2023069030081","DOIUrl":null,"url":null,"abstract":"<p><p>Prospero homeobox 1 (PROX1) is a member of the homeobox transcription factor family that plays a critical role in the development of multiple tissues and specification of cell fate. PROX1 expression is differentially regulated based on the cellular context and plays an antagonistic role as a tumour promoter or suppressor in different tumour types. In human breast cancer, PROX1 expression is suppress-ed; however, the molecular mechanism by which it is down-regulated remains poorly understood. Here, we show that ectopic expression of PROX1 reduces the motility and invasiveness of MDA-MB-231 human breast cancer cells, suggesting that PROX1 functions as a negative regulator of tumour invasion in MDA-MB-231 cells. Treatment with histone deacetylase (HDAC) inhibitors up-regulates PROX1 mRNA and protein expression levels. Knockdown of HDAC1 using short hairpin RNA also up-regulates PROX1 mRNA and protein expression levels. We found that HDAC1 interacted with c-JUN at the activator protein (AP)-1-binding site located at -734 to -710 in the PROX1 promoter region to suppress PROX1 expression. In addition, c-JUN N-terminal kinase-mediated c-JUN phosphorylation was found to be crucial for silencing PROX1 expression. In conclusion, PROX1 expression can be silenced by the epigenetic mechanism involved in the complex formation of HDAC1 and c-JUN at the AP-1 site in the PROX1 promoter region in MDA-MB-231 human breast cancer cells. Therefore, this study revealed the epigenetic regulatory mechanism involved in the suppression of PROX1 expression in breast cancer cells.</p>","PeriodicalId":12281,"journal":{"name":"Folia Biologica","volume":"69 3","pages":"81-90"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Biologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14712/fb2023069030081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prospero homeobox 1 (PROX1) is a member of the homeobox transcription factor family that plays a critical role in the development of multiple tissues and specification of cell fate. PROX1 expression is differentially regulated based on the cellular context and plays an antagonistic role as a tumour promoter or suppressor in different tumour types. In human breast cancer, PROX1 expression is suppress-ed; however, the molecular mechanism by which it is down-regulated remains poorly understood. Here, we show that ectopic expression of PROX1 reduces the motility and invasiveness of MDA-MB-231 human breast cancer cells, suggesting that PROX1 functions as a negative regulator of tumour invasion in MDA-MB-231 cells. Treatment with histone deacetylase (HDAC) inhibitors up-regulates PROX1 mRNA and protein expression levels. Knockdown of HDAC1 using short hairpin RNA also up-regulates PROX1 mRNA and protein expression levels. We found that HDAC1 interacted with c-JUN at the activator protein (AP)-1-binding site located at -734 to -710 in the PROX1 promoter region to suppress PROX1 expression. In addition, c-JUN N-terminal kinase-mediated c-JUN phosphorylation was found to be crucial for silencing PROX1 expression. In conclusion, PROX1 expression can be silenced by the epigenetic mechanism involved in the complex formation of HDAC1 and c-JUN at the AP-1 site in the PROX1 promoter region in MDA-MB-231 human breast cancer cells. Therefore, this study revealed the epigenetic regulatory mechanism involved in the suppression of PROX1 expression in breast cancer cells.
期刊介绍:
Journal of Cellular and Molecular Biology publishes articles describing original research aimed at the elucidation of a wide range of questions of biology and medicine at the cellular and molecular levels. Studies on all organisms as well as on human cells and tissues are welcome.