Peritrophins are involved in the defense against Bacillus thuringiensis and nucleopolyhedrovirus formulations in Spodoptera littoralis (Lepidoptera: Noctuidae)
Gözde Güney , Doga Cedden , Sabine Hänniger , Dwayne D. Hegedus , David G. Heckel , Umut Toprak
{"title":"Peritrophins are involved in the defense against Bacillus thuringiensis and nucleopolyhedrovirus formulations in Spodoptera littoralis (Lepidoptera: Noctuidae)","authors":"Gözde Güney , Doga Cedden , Sabine Hänniger , Dwayne D. Hegedus , David G. Heckel , Umut Toprak","doi":"10.1016/j.ibmb.2024.104073","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>The peritrophic matrix (or peritrophic membrane, PM) is present in most insects where it acts as a barrier to mechanical insults and pathogens, as well as a facilitator of digestive processes. The PM is formed by the binding of structural </span>PM proteins<span>, referred to as peritrophins, to chitin fibrils and spans the entire midgut in </span></span>lepidopterans. To investigate the role of peritrophins in a highly polyphagous lepidopteran pest, namely the cotton leafworm (</span><span><em>Spodoptera littoralis</em></span>), we generated Insect Intestinal Mucin (IIM<sup>−</sup>) and non-mucin Peritrophin (PER<sup>−</sup><span>) mutant strains via CRISPR/Cas9 mutagenesis. Both strains exhibited deformed PMs and retarded developmental rates. Bioassays conducted with </span><span><em>Bacillus thuringiensis</em></span> (<em>Bt</em><span>) and nucleopolyhedrovirus (SpliNPV) formulations showed that both the IIM</span><sup>−</sup> and PER<sup>−</sup><span> mutant larvae were more susceptible to these bioinsecticides compared to the wild-type (WT) larvae with intact PM. Interestingly, the provision of chitin-binding agent Calcofluor (CF) in the diet lowered the toxicity of </span><em>Bt</em> formulations in both WT and IIM<sup>−</sup> larvae and the protective effect of CF was significantly lower in PER<sup>−</sup> larvae. This suggested that the interaction of CF with PER is responsible for <em>Bt</em> resistance mediated by CF. In contrast, the provision of CF caused increased susceptibility to SpliNPV in both mutants and WT larvae. The study showed the importance of peritrophins in the defense against pathogens in <em>S. littoralis</em> and revealed novel insights into CF-mediated resistance to Cry toxin.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"166 ","pages":"Article 104073"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824000043","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The peritrophic matrix (or peritrophic membrane, PM) is present in most insects where it acts as a barrier to mechanical insults and pathogens, as well as a facilitator of digestive processes. The PM is formed by the binding of structural PM proteins, referred to as peritrophins, to chitin fibrils and spans the entire midgut in lepidopterans. To investigate the role of peritrophins in a highly polyphagous lepidopteran pest, namely the cotton leafworm (Spodoptera littoralis), we generated Insect Intestinal Mucin (IIM−) and non-mucin Peritrophin (PER−) mutant strains via CRISPR/Cas9 mutagenesis. Both strains exhibited deformed PMs and retarded developmental rates. Bioassays conducted with Bacillus thuringiensis (Bt) and nucleopolyhedrovirus (SpliNPV) formulations showed that both the IIM− and PER− mutant larvae were more susceptible to these bioinsecticides compared to the wild-type (WT) larvae with intact PM. Interestingly, the provision of chitin-binding agent Calcofluor (CF) in the diet lowered the toxicity of Bt formulations in both WT and IIM− larvae and the protective effect of CF was significantly lower in PER− larvae. This suggested that the interaction of CF with PER is responsible for Bt resistance mediated by CF. In contrast, the provision of CF caused increased susceptibility to SpliNPV in both mutants and WT larvae. The study showed the importance of peritrophins in the defense against pathogens in S. littoralis and revealed novel insights into CF-mediated resistance to Cry toxin.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.