{"title":"Hardware optimized digital down converter for multi-standard radio receiver","authors":"Debarshi Datta, Himadri Sekhar Dutta","doi":"10.1007/s10470-023-02227-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel approach to the reconfigurable digital down converter (DDC) reducing the sampling frequency from 3.64 GHz to 28.4375 MHz on the field-programmable gate array (FPGA) device. The proposed DDC consists of a polyphase mixer and a resampling filter. The polyphase mixer can reduce the high-speed sampling rate signal and generates a complex baseband signal having sufficient noise margin. The resampling filter produces a large decimation factor and improves the filtering quality. The design has been optimized at the sub-component level using very few multiplier blocks, resulting in low power consumption. The sampling rate factors can be dynamically programmed in real-time to increase the flexibility of the design. In addition, truncation is used in each filter stage to protect from overflow errors. Moreover, the design is described in optimum hardware description language to reduce the available resources, without compromising the functionality. Finally, the proposed DDC has been simulated and tested on the Xilinx Kintex-7 FPGA board. According to synthesis results, it is noticed that the proposed design reduces the area and power consumption compared to other existing architectures. In the end, the feasibility of the proposed architecture is tested to certify the system’s validity.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"118 3","pages":"567 - 575"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02227-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel approach to the reconfigurable digital down converter (DDC) reducing the sampling frequency from 3.64 GHz to 28.4375 MHz on the field-programmable gate array (FPGA) device. The proposed DDC consists of a polyphase mixer and a resampling filter. The polyphase mixer can reduce the high-speed sampling rate signal and generates a complex baseband signal having sufficient noise margin. The resampling filter produces a large decimation factor and improves the filtering quality. The design has been optimized at the sub-component level using very few multiplier blocks, resulting in low power consumption. The sampling rate factors can be dynamically programmed in real-time to increase the flexibility of the design. In addition, truncation is used in each filter stage to protect from overflow errors. Moreover, the design is described in optimum hardware description language to reduce the available resources, without compromising the functionality. Finally, the proposed DDC has been simulated and tested on the Xilinx Kintex-7 FPGA board. According to synthesis results, it is noticed that the proposed design reduces the area and power consumption compared to other existing architectures. In the end, the feasibility of the proposed architecture is tested to certify the system’s validity.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.