Three-dimensional printed biomimetic multilayer scaffolds coordinated with sleep-related small extracellular vesicles: A strategy for extracellular matrix homeostasis and macrophage polarization to enhance osteochondral regeneration
{"title":"Three-dimensional printed biomimetic multilayer scaffolds coordinated with sleep-related small extracellular vesicles: A strategy for extracellular matrix homeostasis and macrophage polarization to enhance osteochondral regeneration","authors":"Xu-Ran Li, Qing-Song Deng, Po-Lin Liu, Shu-Hang He, Yuan Gao, Zhan-Ying Wei, Chang-Ru Zhang, Fei Wang, Xiao-Qiu Dou, Helen Dawes, Shang-Chun Guo, Shi-Cong Tao","doi":"10.1002/viw.20230069","DOIUrl":null,"url":null,"abstract":"Cartilage defects resulting from injury or degeneration are a common clinical problem, and due to its avascular nature, articular cartilage has poor self-healing capacity. Three-dimensional (3D) bioprinting has attracted great attention in tissue engineering. Melatonin (MT), a hormone mainly secreted at night, plays an important role in tissue repair. Small extracellular vesicles (sEV) are considered ideal drug delivery vehicles and MT-sEV (sleep-related sEV) have the potential ability to promote cartilage regeneration. Here, biomimetic multilayer scaffolds were fabricated using 3D bioprinting. A double network hydrogel, composed of methacrylated hyaluronic acid and gelatin methacryloyl (HG), was prepared. MT-sEV and HG hydrogel were used to create a cartilage layer. A bone layer was formed using poly(ε-caprolactone) and hydroxyapatite ultralong nanowires. Additionally, two bioinks were alternately printed at the interface layer. The results of RNA sequencing revealed the potential regulatory mechanisms. MT-sEV showed promotional effects on cell migration, proliferation, chondrogenic differentiation, and extracellular matrix (ECM) deposition. Moreover, MT-sEV altered macrophage polarization and regulated the expression of inflammatory cytokines. In vivo experiments demonstrated that the biomimetic multilayer scaffolds promoted cartilage regeneration. These experiments demonstrated the ability of MT-sEV to regulate the immune microenvironment and promote the secretion of ECM, providing a promising strategy for cartilage regeneration.","PeriodicalId":34127,"journal":{"name":"VIEW","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIEW","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/viw.20230069","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cartilage defects resulting from injury or degeneration are a common clinical problem, and due to its avascular nature, articular cartilage has poor self-healing capacity. Three-dimensional (3D) bioprinting has attracted great attention in tissue engineering. Melatonin (MT), a hormone mainly secreted at night, plays an important role in tissue repair. Small extracellular vesicles (sEV) are considered ideal drug delivery vehicles and MT-sEV (sleep-related sEV) have the potential ability to promote cartilage regeneration. Here, biomimetic multilayer scaffolds were fabricated using 3D bioprinting. A double network hydrogel, composed of methacrylated hyaluronic acid and gelatin methacryloyl (HG), was prepared. MT-sEV and HG hydrogel were used to create a cartilage layer. A bone layer was formed using poly(ε-caprolactone) and hydroxyapatite ultralong nanowires. Additionally, two bioinks were alternately printed at the interface layer. The results of RNA sequencing revealed the potential regulatory mechanisms. MT-sEV showed promotional effects on cell migration, proliferation, chondrogenic differentiation, and extracellular matrix (ECM) deposition. Moreover, MT-sEV altered macrophage polarization and regulated the expression of inflammatory cytokines. In vivo experiments demonstrated that the biomimetic multilayer scaffolds promoted cartilage regeneration. These experiments demonstrated the ability of MT-sEV to regulate the immune microenvironment and promote the secretion of ECM, providing a promising strategy for cartilage regeneration.
期刊介绍:
View publishes scientific articles studying novel crucial contributions in the areas of Biomaterials and General Chemistry. View features original academic papers which go through peer review by experts in the given subject area.View encourages submissions from the research community where the priority will be on the originality and the practical impact of the reported research.