A study on preservatives on the structure and properties of natural rubber latex

IF 1.2 4区 化学 Q4 POLYMER SCIENCE
Yuhang Luo, Changjin Yang, Zechun Li, Shuangquan Liao
{"title":"A study on preservatives on the structure and properties of natural rubber latex","authors":"Yuhang Luo,&nbsp;Changjin Yang,&nbsp;Zechun Li,&nbsp;Shuangquan Liao","doi":"10.1007/s42464-023-00231-5","DOIUrl":null,"url":null,"abstract":"<div><p>The preservative of natural rubber latex (NRL) is essentially a kind of bactericide or bacteriostat, mainly used for sterilisation or inhibit bacterial breeding, which will improve the pH of latex. To maintain the colloidal stability and consider the needs of reality manufacture, the NRL preservative also needs to have the advantages in terms of low price, ease to obtain and use, low toxicity, etc. In this study, a derivative of s-triazine (HT), a derivative of 2-methyl-4-isothiazolin-3-one (MI) and 2-methyl-5-chloro-4-isothiazolin-3-one (CMI) mixture (KS) are chosen as a non-ammonia preservative for NRL, which their effect on the structure and properties of NRL was investigated. The results of vulcanisation characteristics showed that the temperature dependence of the samples preserved by preservative HT was lower than that of ammonia and KS during the induction period (t<sub>10</sub>). The test results of molecular weight and cross-linking density showed that the addition of preservative HT could protect the molecular chain structure of NR. In terms of physical and mechanical properties, the performance of sample HT is similar to that of sample ammonia, but after thermo-oxidative ageing at 100 °C for 24 h, the tensile strength retention rate of the sample preserved by the preservative HT can still reach 78%, which is higher than that of the ammonia preserved sample. Therefore, Preservative HT is a relatively better preservative. Its addition will not affect the structure of NRL and the prepared NR has good physical and mechanical properties as well as thermo-oxidative resistance. It can be considered to replace ammonia as the NRL preservative.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 1","pages":"21 - 31"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-023-00231-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The preservative of natural rubber latex (NRL) is essentially a kind of bactericide or bacteriostat, mainly used for sterilisation or inhibit bacterial breeding, which will improve the pH of latex. To maintain the colloidal stability and consider the needs of reality manufacture, the NRL preservative also needs to have the advantages in terms of low price, ease to obtain and use, low toxicity, etc. In this study, a derivative of s-triazine (HT), a derivative of 2-methyl-4-isothiazolin-3-one (MI) and 2-methyl-5-chloro-4-isothiazolin-3-one (CMI) mixture (KS) are chosen as a non-ammonia preservative for NRL, which their effect on the structure and properties of NRL was investigated. The results of vulcanisation characteristics showed that the temperature dependence of the samples preserved by preservative HT was lower than that of ammonia and KS during the induction period (t10). The test results of molecular weight and cross-linking density showed that the addition of preservative HT could protect the molecular chain structure of NR. In terms of physical and mechanical properties, the performance of sample HT is similar to that of sample ammonia, but after thermo-oxidative ageing at 100 °C for 24 h, the tensile strength retention rate of the sample preserved by the preservative HT can still reach 78%, which is higher than that of the ammonia preserved sample. Therefore, Preservative HT is a relatively better preservative. Its addition will not affect the structure of NRL and the prepared NR has good physical and mechanical properties as well as thermo-oxidative resistance. It can be considered to replace ammonia as the NRL preservative.

Abstract Image

Abstract Image

防腐剂对天然胶乳结构和性能的影响研究
天然胶乳(NRL)防腐剂本质上是一种杀菌剂或抑菌剂,主要用于杀菌或抑制细菌繁殖,从而改善胶乳的 pH 值。为了保持胶体的稳定性和考虑现实生产的需要,NRL 防腐剂还需要具有价格低廉、易得易用、毒性低等优点。本研究选择了一种 s-三嗪衍生物(HT)、一种 2-甲基-4-异噻唑啉-3-酮衍生物(MI)和 2-甲基-5-氯-4-异噻唑啉-3-酮(CMI)混合物(KS)作为无氨防腐剂,研究了它们对无氨硫化弹性体结构和性能的影响。硫化特性结果表明,在诱导期(t10)内,使用 HT 防腐剂保存的样品的温度依赖性低于使用氨水和 KS 防腐剂保存的样品。分子量和交联密度的测试结果表明,添加防腐剂 HT 可以保护 NR 的分子链结构。在物理机械性能方面,样品 HT 的性能与样品氨的性能相似,但在 100 ℃ 热氧化老化 24 h 后,防腐剂 HT 防腐样品的拉伸强度保持率仍能达到 78%,高于氨防腐样品。因此,防腐剂 HT 是一种相对较好的防腐剂。它的加入不会影响 NRL 的结构,而且制备的 NR 具有良好的物理和机械性能以及耐热氧化性。可以考虑用它来替代氨作为 NRL 防腐剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Rubber Research
Journal of Rubber Research 化学-高分子科学
自引率
15.40%
发文量
46
审稿时长
3 months
期刊介绍: The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science. The Journal of Rubber Research welcomes research on: the upstream, including crop management, crop improvement and protection, and biotechnology; the midstream, including processing and effluent management; the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory; economics, including the economics of rubber production, consumption, and market analysis. The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines. Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信