{"title":"Wet Film Leveling for Promoting the Uniformity and Conductivity of Silver Nanowire Transparent Electrode","authors":"Shanyong Chen, Cong Zhao and Xianju Zhou*, ","doi":"10.1021/acs.langmuir.3c02987","DOIUrl":null,"url":null,"abstract":"<p >Wet film leveling can greatly promote film uniformity. However, in the field of metal nanowire, wet film leveling is rarely mentioned. For low-viscosity inks like metal nanowire ink, how to realize wet film leveling is still unclear. Herein, we study the wet film leveling of silver nanowire ink and systematically investigate the relationship between leveling effect and influence factors: (1) there is a uniformity-promotion limit for traditional methods, while wet film leveling can break through this limit and further promote the film uniformity; (2) for wet film leveling, lowering ink’s surface tension has no effect, and eliminating surface tension gradient by high-surface-tension leveling agent is the main task; (3) leveling process includes wet film destruction process and ink reflow process; (4) in the destruction process, the leveling-agent solubility and quantity dominate the leveling effect, while the influence of surface tension is little; (5) for solubility and quantity, there is a suitable range to realize optimum leveling effect, and the leveling effect exhibits a contrary relationship with the solubility in a suitable range (2–11%); (6) in the reflow process, the main influence factor is ink viscosity, and the leveling effect exhibits a contrary relationship with ink viscosity. After being leveled by 1.5% <i>n</i>-pentanol, the sheet resistance and sheet-resistance variation coefficient of film decrease from 38.3 Ω/sq/3.83% to 25.7 Ω/sq/1.88%. Further study reveals that the film improvement is not from the ink wettability and drying. Above theoretical results possess certain universality for film preparation by a wet process and can be used by the science and industry field.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 3","pages":"1761–1773"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.3c02987","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wet film leveling can greatly promote film uniformity. However, in the field of metal nanowire, wet film leveling is rarely mentioned. For low-viscosity inks like metal nanowire ink, how to realize wet film leveling is still unclear. Herein, we study the wet film leveling of silver nanowire ink and systematically investigate the relationship between leveling effect and influence factors: (1) there is a uniformity-promotion limit for traditional methods, while wet film leveling can break through this limit and further promote the film uniformity; (2) for wet film leveling, lowering ink’s surface tension has no effect, and eliminating surface tension gradient by high-surface-tension leveling agent is the main task; (3) leveling process includes wet film destruction process and ink reflow process; (4) in the destruction process, the leveling-agent solubility and quantity dominate the leveling effect, while the influence of surface tension is little; (5) for solubility and quantity, there is a suitable range to realize optimum leveling effect, and the leveling effect exhibits a contrary relationship with the solubility in a suitable range (2–11%); (6) in the reflow process, the main influence factor is ink viscosity, and the leveling effect exhibits a contrary relationship with ink viscosity. After being leveled by 1.5% n-pentanol, the sheet resistance and sheet-resistance variation coefficient of film decrease from 38.3 Ω/sq/3.83% to 25.7 Ω/sq/1.88%. Further study reveals that the film improvement is not from the ink wettability and drying. Above theoretical results possess certain universality for film preparation by a wet process and can be used by the science and industry field.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).