Kumuduni Niroshika Palansooriya, Piumi Amasha Withana, Yoonah Jeong, Mee Kyung Sang, Yoora Cho, Geonwook Hwang, Scott X. Chang, Yong Sik Ok
{"title":"Contrasting effects of food waste and its biochar on soil properties and lettuce growth in a microplastic-contaminated soil","authors":"Kumuduni Niroshika Palansooriya, Piumi Amasha Withana, Yoonah Jeong, Mee Kyung Sang, Yoora Cho, Geonwook Hwang, Scott X. Chang, Yong Sik Ok","doi":"10.1186/s13765-023-00851-w","DOIUrl":null,"url":null,"abstract":"<div><p>The incorporation of organic amendments, such as food waste (FW) and biochar, into soil is an established agronomic practice known for enhancing soil fertility and improving overall soil health. However, the individual and combined effects of FW and biochar on soil properties in microplastic (MP)-contaminated soil–plant systems remain poorly understood. To address this knowledge gap, we conducted a field experiment to investigate the individual and combined effects of polystyrene MPs, FW, and FW-derived biochar on soil properties and lettuce growth. Soil chemical properties were unaffected by the addition of MPs. However, the application of FW and biochar increased the soil pH, with the highest pH (8.2) observed in the combined treatment of biochar and MPs. Despite the presence of MPs, FW application resulted in notable increases in soil electrical conductivity (EC; 2.04 dS m<sup>−1</sup>), available nitrogen (NO<sub>3</sub><sup>−</sup>–N: 325.5 mg kg<sup>−1</sup>, NH<sub>4</sub><sup>+</sup>–N: 105.2 mg kg<sup>−1</sup>), available phosphorus (88.4 mg kg<sup>−1</sup>), and total exchangeable cations (18.6 cmol<sub>(+)</sub> kg<sup>−1</sup>). However, these values decreased after lettuce cultivation. In soil cultivated with lettuce, the coexistence of MPs and biochar reduced soil Fluorescein diacetate hydrolase enzyme activity by 46.2% and urease activity by 94.0%. FW addition doubled acid phosphatase activity, whereas FW and its coexistence with MPs decreased alpha diversity. The relative abundance of Actinobacteria decreased with MP application, whereas that of Acidobacteria and Actinobacteria decreased with FW treatment. Gemmatimonadetes and Nitrospirae decreased in soil treated with FW and biochar. The highest relative abundances of Firmicutes and Proteobacteria were observed in the FW-added soils, and Planctomycetes were the highest in the biochar-added soils. FW application negatively affected lettuce growth. Overall, the coexistence of MPs with FW or biochar had limited effects on soil properties and lettuce growth, with FW and biochar serving as the primary factors in modifying soil–plant systems. Future studies should investigate the effects of different MPs and their interactions with organic soil amendments on soil properties and crop growth under different management practices.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-023-00851-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-023-00851-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The incorporation of organic amendments, such as food waste (FW) and biochar, into soil is an established agronomic practice known for enhancing soil fertility and improving overall soil health. However, the individual and combined effects of FW and biochar on soil properties in microplastic (MP)-contaminated soil–plant systems remain poorly understood. To address this knowledge gap, we conducted a field experiment to investigate the individual and combined effects of polystyrene MPs, FW, and FW-derived biochar on soil properties and lettuce growth. Soil chemical properties were unaffected by the addition of MPs. However, the application of FW and biochar increased the soil pH, with the highest pH (8.2) observed in the combined treatment of biochar and MPs. Despite the presence of MPs, FW application resulted in notable increases in soil electrical conductivity (EC; 2.04 dS m−1), available nitrogen (NO3−–N: 325.5 mg kg−1, NH4+–N: 105.2 mg kg−1), available phosphorus (88.4 mg kg−1), and total exchangeable cations (18.6 cmol(+) kg−1). However, these values decreased after lettuce cultivation. In soil cultivated with lettuce, the coexistence of MPs and biochar reduced soil Fluorescein diacetate hydrolase enzyme activity by 46.2% and urease activity by 94.0%. FW addition doubled acid phosphatase activity, whereas FW and its coexistence with MPs decreased alpha diversity. The relative abundance of Actinobacteria decreased with MP application, whereas that of Acidobacteria and Actinobacteria decreased with FW treatment. Gemmatimonadetes and Nitrospirae decreased in soil treated with FW and biochar. The highest relative abundances of Firmicutes and Proteobacteria were observed in the FW-added soils, and Planctomycetes were the highest in the biochar-added soils. FW application negatively affected lettuce growth. Overall, the coexistence of MPs with FW or biochar had limited effects on soil properties and lettuce growth, with FW and biochar serving as the primary factors in modifying soil–plant systems. Future studies should investigate the effects of different MPs and their interactions with organic soil amendments on soil properties and crop growth under different management practices.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.