{"title":"Identification of a new oligomycin derivative as a specific inhibitor of the alternative peptidoglycan biosynthetic pathway","authors":"Shuhei Umetsu, Takeshi Tsunoda, Haruka Kiyanagi, Yuki Inahashi, Kenichi Nonaka, Tohru Dairi, Yasushi Ogasawara","doi":"10.1038/s41429-023-00693-0","DOIUrl":null,"url":null,"abstract":"Peptidoglycan is an important macromolecule in bacterial cell walls to maintain cell integrity, and its biosynthetic pathway has been well studied. Recently, we demonstrated that some bacteria such as Xanthomonas oryzae, a pathogen causing bacterial blight of rice, used an alternative pathway for peptidoglycan biosynthesis. In this pathway, MurD2, a MurD homolog, catalyzed the attachment of l-Glu to UDP-MurNAc-l-Ala and MurL, which did not show homology to any known protein, catalyzed epimerization of the terminal l-Glu of the MurD2 product to generate UDP-MurNAc-l-Ala-d-Glu. Because the alternative pathway also operates in some other plant pathogens and opportunistic pathogens, specific inhibitors of the alternative pathway could function as pesticides and antibiotics for these pathogens. In this study, we searched for specific inhibitors of the alternative pathway from metabolites produced by actinomycetes and identified a new oligomycin-class polyketide, which was revealed to inhibit the MurD2 reaction, in culture broth of Micromonospora sp. K18-0097.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 3","pages":"182-184"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41429-023-00693-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-023-00693-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peptidoglycan is an important macromolecule in bacterial cell walls to maintain cell integrity, and its biosynthetic pathway has been well studied. Recently, we demonstrated that some bacteria such as Xanthomonas oryzae, a pathogen causing bacterial blight of rice, used an alternative pathway for peptidoglycan biosynthesis. In this pathway, MurD2, a MurD homolog, catalyzed the attachment of l-Glu to UDP-MurNAc-l-Ala and MurL, which did not show homology to any known protein, catalyzed epimerization of the terminal l-Glu of the MurD2 product to generate UDP-MurNAc-l-Ala-d-Glu. Because the alternative pathway also operates in some other plant pathogens and opportunistic pathogens, specific inhibitors of the alternative pathway could function as pesticides and antibiotics for these pathogens. In this study, we searched for specific inhibitors of the alternative pathway from metabolites produced by actinomycetes and identified a new oligomycin-class polyketide, which was revealed to inhibit the MurD2 reaction, in culture broth of Micromonospora sp. K18-0097.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.