Youri Duchene, Frédéric R Simon, Geoffrey N Ertel, Hugo Maciejewski, Gérome C Gauchard, Guillaume Mornieux
{"title":"The stroke rate influences performance, technique and core stability during rowing ergometer.","authors":"Youri Duchene, Frédéric R Simon, Geoffrey N Ertel, Hugo Maciejewski, Gérome C Gauchard, Guillaume Mornieux","doi":"10.1080/14763141.2024.2301992","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to determine the effect of stroke rate on performance, technique and core stability during rowing ergometer. Twenty-four high-level rowers performed maximal intensity one-minute bouts at 20, 28 and 34 spm on a RowPerfect3 ergometer. Power at the handle, legs, trunk and arms levels were determined, and core kinematics and neuromuscular activations were measured. The power at the handle was enhanced with a higher stroke rate in the first half of the drive phase due to higher segment's powers. This resulted in technical changes, as for instance greater mean to peak power ratio at each segment level. The higher trunk power preceded a delayed trunk extension but without significant increase in the erector spinae activation. This underlines the role of the core stability to transfer forces at a higher stroke rate. However, no co-activation parameters between trunk flexors and extensors helped further to understand this force transfer. Rowing at low stroke rate can be a training strategy to work on earlier trunk extension, while maintaining erectors spinae levels of activation. Training at higher stroke rate will induce a rowing technique closer to competition with greater neuromuscular activations, and maximise power production.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1576-1593"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2301992","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to determine the effect of stroke rate on performance, technique and core stability during rowing ergometer. Twenty-four high-level rowers performed maximal intensity one-minute bouts at 20, 28 and 34 spm on a RowPerfect3 ergometer. Power at the handle, legs, trunk and arms levels were determined, and core kinematics and neuromuscular activations were measured. The power at the handle was enhanced with a higher stroke rate in the first half of the drive phase due to higher segment's powers. This resulted in technical changes, as for instance greater mean to peak power ratio at each segment level. The higher trunk power preceded a delayed trunk extension but without significant increase in the erector spinae activation. This underlines the role of the core stability to transfer forces at a higher stroke rate. However, no co-activation parameters between trunk flexors and extensors helped further to understand this force transfer. Rowing at low stroke rate can be a training strategy to work on earlier trunk extension, while maintaining erectors spinae levels of activation. Training at higher stroke rate will induce a rowing technique closer to competition with greater neuromuscular activations, and maximise power production.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.