Effects of ultraviolet and photosynthetically active radiation on morphogenesis, antioxidants and photoprotective defense mechanism in a hot-spring cyanobacterium Nostoc sp. strain VKB02

IF 2.5 4区 生物学 Q3 MICROBIOLOGY
Nasreen Amin , Rajeshwar P. Sinha , Vinod K. Kannaujiya
{"title":"Effects of ultraviolet and photosynthetically active radiation on morphogenesis, antioxidants and photoprotective defense mechanism in a hot-spring cyanobacterium Nostoc sp. strain VKB02","authors":"Nasreen Amin ,&nbsp;Rajeshwar P. Sinha ,&nbsp;Vinod K. Kannaujiya","doi":"10.1016/j.resmic.2024.104180","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The continuous increase in global temperature and ultraviolet radiation (UVR) causes profound impacts on the growth and physiology of photosynthetic microorganisms. The hot-spring </span>cyanobacteria have a wide range of mitigation mechanisms to cope up against current unsustainable environmental conditions. In the present investigation, we have explored the indispensable mitigation strategies of an isolated hot-spring cyanobacterium </span><span><em>Nostoc</em></span><span> sp. strain VKB02 under simulated ultraviolet (UV-A, UV-B) and photosynthetically active radiation (PAR). The adaptive morphological changes were more significantly observed under PAB (PAR, UV-A, and UV-B) exposure as compared to P and PA (PAR and UV-A) irradiations. PAB exposure also exhibited a marked decline in pigment composition and photosynthetic efficiency by multi-fold increment of free radicals. To counteract the oxidative stress, enzymatic and non-enzymatic antioxidants defense were significantly enhanced many folds under PAB exposure as compared to the control. In addition, the cyanobacterium has also produced shinorine as a strong free radicals scavenger and excellent UV absorber for effective photoprotection against UV radiation. Therefore, the hot-spring cyanobacterium </span><em>Nostoc</em> sp. strain VKB02 has unique defense strategies for survival under prolonged lethal UVR conditions. This study will help in the understanding of environment-induced defense strategies and production of highly value-added green photo-protectants for commercial applications.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 5","pages":"Article 104180"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250824000019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous increase in global temperature and ultraviolet radiation (UVR) causes profound impacts on the growth and physiology of photosynthetic microorganisms. The hot-spring cyanobacteria have a wide range of mitigation mechanisms to cope up against current unsustainable environmental conditions. In the present investigation, we have explored the indispensable mitigation strategies of an isolated hot-spring cyanobacterium Nostoc sp. strain VKB02 under simulated ultraviolet (UV-A, UV-B) and photosynthetically active radiation (PAR). The adaptive morphological changes were more significantly observed under PAB (PAR, UV-A, and UV-B) exposure as compared to P and PA (PAR and UV-A) irradiations. PAB exposure also exhibited a marked decline in pigment composition and photosynthetic efficiency by multi-fold increment of free radicals. To counteract the oxidative stress, enzymatic and non-enzymatic antioxidants defense were significantly enhanced many folds under PAB exposure as compared to the control. In addition, the cyanobacterium has also produced shinorine as a strong free radicals scavenger and excellent UV absorber for effective photoprotection against UV radiation. Therefore, the hot-spring cyanobacterium Nostoc sp. strain VKB02 has unique defense strategies for survival under prolonged lethal UVR conditions. This study will help in the understanding of environment-induced defense strategies and production of highly value-added green photo-protectants for commercial applications.

紫外线和光合有效辐射对温泉蓝藻 Nostoc sp. 菌株 VKB02 的形态发生、抗氧化剂和光保护防御机制的影响
全球温度和紫外线辐射(UVR)的持续上升对光合微生物的生长和生理产生了深远的影响。温泉蓝藻具有广泛的缓解机制,以应对当前不可持续的环境条件。本研究探讨了分离的热泉蓝藻 Nostoc sp. VKB02 菌株在模拟紫外线(UV-A、UV-B)和光合有效辐射(PAR)条件下不可或缺的缓解策略。与 P 和 PA(PAR 和 UV-A)照射相比,PAB(PAR、UV-A 和 UV-B)照射下的适应性形态变化更为明显。由于自由基的成倍增加,PAB照射也导致色素组成和光合效率明显下降。为了抵御氧化应激,与对照组相比,PAB 暴露下酶和非酶抗氧化剂的防御能力明显增强了许多倍。此外,蓝藻还能产生霞糠碱,它是一种强力的自由基清除剂和优异的紫外线吸收剂,能有效抵御紫外线辐射。因此,温泉蓝藻 Nostoc sp. 菌株 VKB02 具有独特的防御策略,可在长期致命紫外线辐射条件下生存。这项研究将有助于了解环境诱导的防御策略,并生产出高附加值的绿色光保护剂,用于商业用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in microbiology
Research in microbiology 生物-微生物学
CiteScore
4.10
自引率
3.80%
发文量
54
审稿时长
16 days
期刊介绍: Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信