{"title":"Melatonin alleviates ischemic stroke by inhibiting ferroptosis through the CYP1B1/ACSL4 pathway","authors":"Yu Sun, Haiyan Jin, Jia He, Jinyu Lai, Hao Lin, Xiangyu Liu","doi":"10.1002/tox.24136","DOIUrl":null,"url":null,"abstract":"<p>This study utilized middle cerebral artery occlusion (MCAO) mouse models and HT-22 cell oxygen and glucose deprivation/reoxygenation (OGD/R) models to investigate the therapeutic effects of melatonin on ischemic brain injury. In the experiments, MCAO mice were treated with 5 and 10 mg/kg doses of melatonin, and H-T22 cells underwent OGD/R treatment and were administered different concentrations of melatonin. The results showed that melatonin significantly reduced ischemic brain area, neural damage, cerebral edema, and neuronal apoptosis in MCAO mice. In the HT-22 cell model, melatonin also improved cell proliferation ability, reduced apoptosis, and ROS production. Further mechanistic studies found that melatonin exerts protective effects by inhibiting ferroptosis, an iron-dependent form of regulated cell death, through regulation of the ACSL4/CYP1B1 pathway. In MCAO mice, melatonin decreased lipid peroxidation, ROS production, and ACSL4 protein expression. Overexpression of CYP1B1 increased ACSL4 ubiquitination and degradation, thereby increasing cell tolerance to ferroptosis, reducing ACSL4 protein levels, and decreasing ROS production. CYP1B1 knockdown obtained opposite results. The CYP1B1 metabolite 20-HETE induces expression of the E3 ubiquitin ligase FBXO10 by activating PKC signaling, which promotes ACSL4 degradation. In the OGD/R cell model, inhibition of CYP1B1 expression reversed the therapeutic effects of melatonin. In summary, this study demonstrates that melatonin protects the brain from ischemic injury by inhibiting ferroptosis through regulation of the ACSL4/CYP1B1 pathway, providing evidence for new therapeutic targets for ischemic brain injury.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 5","pages":"2623-2633"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24136","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study utilized middle cerebral artery occlusion (MCAO) mouse models and HT-22 cell oxygen and glucose deprivation/reoxygenation (OGD/R) models to investigate the therapeutic effects of melatonin on ischemic brain injury. In the experiments, MCAO mice were treated with 5 and 10 mg/kg doses of melatonin, and H-T22 cells underwent OGD/R treatment and were administered different concentrations of melatonin. The results showed that melatonin significantly reduced ischemic brain area, neural damage, cerebral edema, and neuronal apoptosis in MCAO mice. In the HT-22 cell model, melatonin also improved cell proliferation ability, reduced apoptosis, and ROS production. Further mechanistic studies found that melatonin exerts protective effects by inhibiting ferroptosis, an iron-dependent form of regulated cell death, through regulation of the ACSL4/CYP1B1 pathway. In MCAO mice, melatonin decreased lipid peroxidation, ROS production, and ACSL4 protein expression. Overexpression of CYP1B1 increased ACSL4 ubiquitination and degradation, thereby increasing cell tolerance to ferroptosis, reducing ACSL4 protein levels, and decreasing ROS production. CYP1B1 knockdown obtained opposite results. The CYP1B1 metabolite 20-HETE induces expression of the E3 ubiquitin ligase FBXO10 by activating PKC signaling, which promotes ACSL4 degradation. In the OGD/R cell model, inhibition of CYP1B1 expression reversed the therapeutic effects of melatonin. In summary, this study demonstrates that melatonin protects the brain from ischemic injury by inhibiting ferroptosis through regulation of the ACSL4/CYP1B1 pathway, providing evidence for new therapeutic targets for ischemic brain injury.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.