XiaoWei Feng, Ming Hu, Cong Ming Wei, Hong Yu Zhang, Wen Wen Jiang, Qi Hu
{"title":"Jeduxiaoliu Formula can Induce Apoptosis of Lymphoma Cells <i>In Vitro</i> and <i>In Vivo</i>.","authors":"XiaoWei Feng, Ming Hu, Cong Ming Wei, Hong Yu Zhang, Wen Wen Jiang, Qi Hu","doi":"10.2174/0113862073271687231122064637","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Lymphoma is the most common malignancy of the haematological system. Jeduxiaoliu formula (JDXLF) exerts good therapeutic effects against lymphoma, however, the mechanisms underlying these effects remain unclear. Therefore, this study aimed to investigate the mechanism of action of JDXLF.</p><p><strong>Methods: </strong>RNA-Seq was performed to examine the molecular mechanisms underlying the therapeutic effects of JDXLF against lymphoma. CCK-8 assay was performed to examine the effects of JDXLF on the proliferation of lymphoma cells. Electron microscopy was performed to examine the morphology of lymphoma cells. Flow cytometry was performed to examine the apoptosis and cell cycle of lymphoma cells. qPCR and Western blotting were performed to detect the expression of apoptotic genes and proteins. <i>In vivo</i>, the tumour-suppressive effect of JDXLF on lymphoma transplanted tumours was examined by establishing a subcutaneous transplantation tumour model in nude mice, and the expression of apoptotic proteins in tumour tissues was analysed via immunohistochemical staining.</p><p><strong>Results: </strong>RNA-Seq revealed 71, 350 and 620 differentially expressed genes (DEGs) in the 1 mg/mL, 4 mg/mL and 8 mg/mL JDXLF treatment groups, respectively. KEGG pathway analysis showed that the DEGs were significantly associated with apoptosis, TNF signalling and NF-κB signalling. <i>In vitro</i> experiments revealed that JDXLF inhibited the proliferation of lymphoma (Raji and Jeko-1) cells in a dose-dependent manner, induced apoptosis and upregulated the expression of Bax/Bcl2 and caspase3. <i>In vivo</i> experiments revealed that JDXLF had a significant tumourshrinking effect on mice and increased the expression of the apoptosis-related proteins caspase3 and Bax/Bcl2.</p><p><strong>Cconclusions: </strong>This study indicates that JDXLF can induce apoptosis in lymphoma cells <i>in vitro</i> and <i>in vivo</i>. We suggest this may provide a direction for further research into lymphoma therapy.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":"319-338"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073271687231122064637","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Lymphoma is the most common malignancy of the haematological system. Jeduxiaoliu formula (JDXLF) exerts good therapeutic effects against lymphoma, however, the mechanisms underlying these effects remain unclear. Therefore, this study aimed to investigate the mechanism of action of JDXLF.
Methods: RNA-Seq was performed to examine the molecular mechanisms underlying the therapeutic effects of JDXLF against lymphoma. CCK-8 assay was performed to examine the effects of JDXLF on the proliferation of lymphoma cells. Electron microscopy was performed to examine the morphology of lymphoma cells. Flow cytometry was performed to examine the apoptosis and cell cycle of lymphoma cells. qPCR and Western blotting were performed to detect the expression of apoptotic genes and proteins. In vivo, the tumour-suppressive effect of JDXLF on lymphoma transplanted tumours was examined by establishing a subcutaneous transplantation tumour model in nude mice, and the expression of apoptotic proteins in tumour tissues was analysed via immunohistochemical staining.
Results: RNA-Seq revealed 71, 350 and 620 differentially expressed genes (DEGs) in the 1 mg/mL, 4 mg/mL and 8 mg/mL JDXLF treatment groups, respectively. KEGG pathway analysis showed that the DEGs were significantly associated with apoptosis, TNF signalling and NF-κB signalling. In vitro experiments revealed that JDXLF inhibited the proliferation of lymphoma (Raji and Jeko-1) cells in a dose-dependent manner, induced apoptosis and upregulated the expression of Bax/Bcl2 and caspase3. In vivo experiments revealed that JDXLF had a significant tumourshrinking effect on mice and increased the expression of the apoptosis-related proteins caspase3 and Bax/Bcl2.
Cconclusions: This study indicates that JDXLF can induce apoptosis in lymphoma cells in vitro and in vivo. We suggest this may provide a direction for further research into lymphoma therapy.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.