Kazem Javanmardi, Hamideh Shahbazi, Ava Soltani Hekmat, Mehdi Khanmohammadi, Arash Goodarzi
{"title":"Dexamethasone release from hyaluronic acid microparticle and proanthocyanidin-gelatin hydrogel in sciatic tissue regeneration.","authors":"Kazem Javanmardi, Hamideh Shahbazi, Ava Soltani Hekmat, Mehdi Khanmohammadi, Arash Goodarzi","doi":"10.1007/s10856-023-06768-6","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradable microparticles are useful vehicles for the controlled release of bioactive molecules in drug delivery, tissue engineering and biopharmaceutical applications. We developed dexamethasone (Dex) encapsulation into tyramine-substituted hyaluronic acid microparticles (Dex-HA-Tyr Mp) mediated by horseradish peroxidase (HRP) crosslinking using a microfluidic device and infollowing crosslinked gelatin (Gela) with proanthocyanidin (PA) as a semi-confined bed hydrogel for the repair of sciatic tissue injury. It was found that the simultaneous use of Dex-HA-Tyr Mp and cross-linked Gela-PA hydrogel improved the physical properties of the hydrogel, including mechanical strength and degradability. The designed composite also provided a sustained release system for Dex delivery to the surrounding sites, demonstrating the applicability of the fabricated hydrogel composite for sciatic nerve tissue engineering and regeneration. The encapsulated cells were viable and showed adequate growth ability and morphogenesis during prolonged incubation in Gela-PA/HA-Tyr Mp hydrogel compared to control conditions. Interestingly, histological analysis revealed a significant increase in the number of axons in the injured sciatic nerve following treatment with Dex-HA-Tyr Mp and injectable Gela-PA hydrogel compared to other control groups. In conclusion, the results demonstrated that fabricated Dex-loaded MPs and injectable hydrogel from biomimetic components are suitable systems for sustained delivery of Dex with adequate biocompatibility and the approach may have potential therapeutic applications in peripheral nerve regeneration.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":"5"},"PeriodicalIF":4.2000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10856-023-06768-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biodegradable microparticles are useful vehicles for the controlled release of bioactive molecules in drug delivery, tissue engineering and biopharmaceutical applications. We developed dexamethasone (Dex) encapsulation into tyramine-substituted hyaluronic acid microparticles (Dex-HA-Tyr Mp) mediated by horseradish peroxidase (HRP) crosslinking using a microfluidic device and infollowing crosslinked gelatin (Gela) with proanthocyanidin (PA) as a semi-confined bed hydrogel for the repair of sciatic tissue injury. It was found that the simultaneous use of Dex-HA-Tyr Mp and cross-linked Gela-PA hydrogel improved the physical properties of the hydrogel, including mechanical strength and degradability. The designed composite also provided a sustained release system for Dex delivery to the surrounding sites, demonstrating the applicability of the fabricated hydrogel composite for sciatic nerve tissue engineering and regeneration. The encapsulated cells were viable and showed adequate growth ability and morphogenesis during prolonged incubation in Gela-PA/HA-Tyr Mp hydrogel compared to control conditions. Interestingly, histological analysis revealed a significant increase in the number of axons in the injured sciatic nerve following treatment with Dex-HA-Tyr Mp and injectable Gela-PA hydrogel compared to other control groups. In conclusion, the results demonstrated that fabricated Dex-loaded MPs and injectable hydrogel from biomimetic components are suitable systems for sustained delivery of Dex with adequate biocompatibility and the approach may have potential therapeutic applications in peripheral nerve regeneration.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.