{"title":"Cadmium toxicity: its’ uptake and retaliation by plant defence system and ja signaling","authors":"Shruti Kaushik, Alok Ranjan, Anmol Sidhu, Anil Kumar Singh, Geetika Sirhindi","doi":"10.1007/s10534-023-00569-8","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium (Cd<sup>+2</sup>) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca<sup>2+</sup>signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca<sup>2+</sup> signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 4","pages":"755 - 772"},"PeriodicalIF":4.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-023-00569-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.