{"title":"A potential seasonal predictor for summer rainfall over eastern China: Spring Eurasian snowmelt","authors":"Bei Xu, Gen Li","doi":"10.1175/jcli-d-23-0428.1","DOIUrl":null,"url":null,"abstract":"Abstract The hydrological effect of snow over Eurasia is important for regulating regional and global climate through affecting land-atmosphere energy exchange. Based on the observational and reanalysis datasets, this study investigates the effect of spring Eurasian snowmelt on the following summer rainfall over eastern China during the period of 1979–2018. The results show that a substantial meridional dipole pattern of summer rainfall anomalies over eastern China is closely associated with the preceding spring snowmelt anomalies over Eurasia, especially over the remote Siberia. Excessive snowmelt anomalies over Siberia in spring could result in a wetter local soil condition from spring until the following summer, thereby increasing latent heat fluxes and reducing local surface temperature, and vice versa. Then, the anomalous summer surface cooling over Siberia increases the meridional gradient of temperature between the Eurasian mid- latitudes and high-latitudes, which intensifies the Eurasian atmospheric baroclinicity and motivates the eddy- induced geopotential height responses along with the significant wave propagations spreading from the Eurasian high- latitudes to Lake Baikal. As a result, excessive spring snowmelt anomalies over Siberia tend to be accompanied with an anomalous anticyclone circulation to the east of Lake Baikal and an anomalous cyclonic circulation over southeastern China in the following summer. This could lead to a meridional dipole pattern of summer rainfall anomalies over eastern China, with deficient rainfall over northern China and slightly excessive rainfall over southern China. The present findings highlight the lagged effect of spring Eurasian snowmelt on summer climate over eastern China, with implications for the regional seasonal climate prediction.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"24 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0428.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The hydrological effect of snow over Eurasia is important for regulating regional and global climate through affecting land-atmosphere energy exchange. Based on the observational and reanalysis datasets, this study investigates the effect of spring Eurasian snowmelt on the following summer rainfall over eastern China during the period of 1979–2018. The results show that a substantial meridional dipole pattern of summer rainfall anomalies over eastern China is closely associated with the preceding spring snowmelt anomalies over Eurasia, especially over the remote Siberia. Excessive snowmelt anomalies over Siberia in spring could result in a wetter local soil condition from spring until the following summer, thereby increasing latent heat fluxes and reducing local surface temperature, and vice versa. Then, the anomalous summer surface cooling over Siberia increases the meridional gradient of temperature between the Eurasian mid- latitudes and high-latitudes, which intensifies the Eurasian atmospheric baroclinicity and motivates the eddy- induced geopotential height responses along with the significant wave propagations spreading from the Eurasian high- latitudes to Lake Baikal. As a result, excessive spring snowmelt anomalies over Siberia tend to be accompanied with an anomalous anticyclone circulation to the east of Lake Baikal and an anomalous cyclonic circulation over southeastern China in the following summer. This could lead to a meridional dipole pattern of summer rainfall anomalies over eastern China, with deficient rainfall over northern China and slightly excessive rainfall over southern China. The present findings highlight the lagged effect of spring Eurasian snowmelt on summer climate over eastern China, with implications for the regional seasonal climate prediction.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.