{"title":"Pomegranate's (Punica granatum L.) fruit quality and nutrient content are influenced by soil fraction × root architecture interaction","authors":"Ferhad Muradoğlu, Emrah Güler, Gökhan Akkuş, İbrahim Başak, Olaniyi Amos Fawole","doi":"10.1111/aab.12889","DOIUrl":null,"url":null,"abstract":"<p>Among the most important factors influencing plant nutrient uptake and water access are soil fraction and root architecture. However, little is known about how soil fraction × root architecture interaction affects woody plants. This study considered the differentiation of soil fertility parameters on layers through the root zone of two different soils and the quality and nutrient responses of three newly bred pomegranate varieties to soil fractions based on root architecture in clay and clay loam orchards. According to the findings, increasing clay content in the deeper layers has a negative impact on soil fertility, organic matter, phosphorus (P), and potassium (K). In clayey conditions, pomegranate varieties yielded lower in a range of 2.74% to 6.10% and significantly lower macro and micronutrient insertion. Conversely, the shallow-rooted variety accumulated significantly more boron (B) and P and set 50% more fruits in the clayey orchards. Soil fractions × root architecture significantly altered fruit quality characteristics, nutrient ingredients, and their relationships supported by a relatively low linear relationship in the Mantel test (<i>r</i> = 0.42). This study suggests that pomegranate tree responses to soil fractions are determined by root architecture. A proper approach to obtaining high-quality and nutritionally fortified pomegranates will incorporate appropriate cultivation techniques, such as suitable fertigation regime regulation, harvest date optimization, and soil organic matter enrichment, to provide uniform nutrient uptake based on the soil type and variety's root architecture.</p>","PeriodicalId":7977,"journal":{"name":"Annals of Applied Biology","volume":"184 3","pages":"288-299"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aab.12889","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Among the most important factors influencing plant nutrient uptake and water access are soil fraction and root architecture. However, little is known about how soil fraction × root architecture interaction affects woody plants. This study considered the differentiation of soil fertility parameters on layers through the root zone of two different soils and the quality and nutrient responses of three newly bred pomegranate varieties to soil fractions based on root architecture in clay and clay loam orchards. According to the findings, increasing clay content in the deeper layers has a negative impact on soil fertility, organic matter, phosphorus (P), and potassium (K). In clayey conditions, pomegranate varieties yielded lower in a range of 2.74% to 6.10% and significantly lower macro and micronutrient insertion. Conversely, the shallow-rooted variety accumulated significantly more boron (B) and P and set 50% more fruits in the clayey orchards. Soil fractions × root architecture significantly altered fruit quality characteristics, nutrient ingredients, and their relationships supported by a relatively low linear relationship in the Mantel test (r = 0.42). This study suggests that pomegranate tree responses to soil fractions are determined by root architecture. A proper approach to obtaining high-quality and nutritionally fortified pomegranates will incorporate appropriate cultivation techniques, such as suitable fertigation regime regulation, harvest date optimization, and soil organic matter enrichment, to provide uniform nutrient uptake based on the soil type and variety's root architecture.
期刊介绍:
Annals of Applied Biology is an international journal sponsored by the Association of Applied Biologists. The journal publishes original research papers on all aspects of applied research on crop production, crop protection and the cropping ecosystem. The journal is published both online and in six printed issues per year.
Annals papers must contribute substantially to the advancement of knowledge and may, among others, encompass the scientific disciplines of:
Agronomy
Agrometeorology
Agrienvironmental sciences
Applied genomics
Applied metabolomics
Applied proteomics
Biodiversity
Biological control
Climate change
Crop ecology
Entomology
Genetic manipulation
Molecular biology
Mycology
Nematology
Pests
Plant pathology
Plant breeding & genetics
Plant physiology
Post harvest biology
Soil science
Statistics
Virology
Weed biology
Annals also welcomes reviews of interest in these subject areas. Reviews should be critical surveys of the field and offer new insights. All papers are subject to peer review. Papers must usually contribute substantially to the advancement of knowledge in applied biology but short papers discussing techniques or substantiated results, and reviews of current knowledge of interest to applied biologists will be considered for publication. Papers or reviews must not be offered to any other journal for prior or simultaneous publication and normally average seven printed pages.