Tristan Lacombe, Lucia Gurioli, Andrea Di Muro, Etienne Médard, Carole Berthod, Patrick Bachèlery, Julien Bernard, Ludivine Sadeski, Jean-Christophe Komorowski
{"title":"Late Quaternary explosive phonolitic volcanism of Petite-Terre (Mayotte, Western Indian Ocean)","authors":"Tristan Lacombe, Lucia Gurioli, Andrea Di Muro, Etienne Médard, Carole Berthod, Patrick Bachèlery, Julien Bernard, Ludivine Sadeski, Jean-Christophe Komorowski","doi":"10.1007/s00445-023-01697-2","DOIUrl":null,"url":null,"abstract":"<p>We studied four Quaternary volcanic phonolitic explosive edifices on Petite-Terre Island (Mayotte, Comoros Archipelago, Western Indian Ocean) to quantify magma fragmentation processes and eruptive dynamics. Petite-Terre explosive volcanism is the westernmost subaerial expression of a 60-km-long volcanic chain, whose eastern tip was the site of the 2018–2020 submarine eruption of the new Fani Maoré volcano. The persistence of deep seismic activity and magmatic degassing along the volcanic chain poses the question of a possible reactivation on land. Through geomorphology, stratigraphy, grain size, and componentry data, we show that Petite-Terre “maars” are actually tuff rings and tuff cones likely formed by several closely spaced eruptions. The eruptive sequences of each edifice are composed of thin (cm–dm), coarse, lithic-poor pumice fallout layers containing abundant ballistic clasts, and fine ash-rich deposits mostly emplaced by dilute pyroclastic density currents (PDCs). Deposits are composed of vesiculated, juvenile fragments (pumice clasts, dense clasts, and obsidian), and non-juvenile clasts (from older mafic scoria cones, coral reef, the volcanic shield of Mayotte, as well as occasional mantle xenoliths). We conclude that phonolitic magma ascended directly and rapidly from depth (around 17 km) and experienced a first, purely magmatic fragmentation, at depth (≈ 1 km in depth). The fragmented pyroclasts then underwent a second shallower hydromagmatic fragmentation when they interacted with water, producing fine ash and building the tuff rings and tuff cones.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"264 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-023-01697-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We studied four Quaternary volcanic phonolitic explosive edifices on Petite-Terre Island (Mayotte, Comoros Archipelago, Western Indian Ocean) to quantify magma fragmentation processes and eruptive dynamics. Petite-Terre explosive volcanism is the westernmost subaerial expression of a 60-km-long volcanic chain, whose eastern tip was the site of the 2018–2020 submarine eruption of the new Fani Maoré volcano. The persistence of deep seismic activity and magmatic degassing along the volcanic chain poses the question of a possible reactivation on land. Through geomorphology, stratigraphy, grain size, and componentry data, we show that Petite-Terre “maars” are actually tuff rings and tuff cones likely formed by several closely spaced eruptions. The eruptive sequences of each edifice are composed of thin (cm–dm), coarse, lithic-poor pumice fallout layers containing abundant ballistic clasts, and fine ash-rich deposits mostly emplaced by dilute pyroclastic density currents (PDCs). Deposits are composed of vesiculated, juvenile fragments (pumice clasts, dense clasts, and obsidian), and non-juvenile clasts (from older mafic scoria cones, coral reef, the volcanic shield of Mayotte, as well as occasional mantle xenoliths). We conclude that phonolitic magma ascended directly and rapidly from depth (around 17 km) and experienced a first, purely magmatic fragmentation, at depth (≈ 1 km in depth). The fragmented pyroclasts then underwent a second shallower hydromagmatic fragmentation when they interacted with water, producing fine ash and building the tuff rings and tuff cones.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.