Field theory description of the non-perturbative optical nonlinearity of epsilon-near-zero media

IF 5.4 1区 物理与天体物理 Q1 OPTICS
APL Photonics Pub Date : 2024-01-09 DOI:10.1063/5.0171708
Yaraslau Tamashevich, Tornike Shubitidze, Luca Dal Negro, Marco Ornigotti
{"title":"Field theory description of the non-perturbative optical nonlinearity of epsilon-near-zero media","authors":"Yaraslau Tamashevich, Tornike Shubitidze, Luca Dal Negro, Marco Ornigotti","doi":"10.1063/5.0171708","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a fully non-perturbative approach for the description of the optical nonlinearity of epsilon-near-zero (ENZ) media. In particular, based on the rigorous Feynman path integral method, we develop a dressed Lagrangian field theory for light–matter interactions and discuss its application to dispersive Kerr-like media with order-of-unity light-induced refractive index variations. Specifically, considering the relevant case of Indium Tin Oxide (ITO) nonlinearities, we address the novel regime of non-perturbative refractive index variations in ENZ media and establish that it follows naturally from a scalar field theory with a Born–Infeld Lagrangian. Moreover, we developed a predictive model that includes the intrinsic saturation effects originating from the light-induced modification of the Drude terms in the linear dispersion of ITO materials. Our results extend the Huttner–Barnett–Bechler electrodynamics model to the case of non-perturbative optical Kerr-like media providing an intrinsically nonlinear, field-theoretic framework for understanding the exceptional nonlinearity of ITO materials beyond traditional perturbation theory.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"254 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0171708","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a fully non-perturbative approach for the description of the optical nonlinearity of epsilon-near-zero (ENZ) media. In particular, based on the rigorous Feynman path integral method, we develop a dressed Lagrangian field theory for light–matter interactions and discuss its application to dispersive Kerr-like media with order-of-unity light-induced refractive index variations. Specifically, considering the relevant case of Indium Tin Oxide (ITO) nonlinearities, we address the novel regime of non-perturbative refractive index variations in ENZ media and establish that it follows naturally from a scalar field theory with a Born–Infeld Lagrangian. Moreover, we developed a predictive model that includes the intrinsic saturation effects originating from the light-induced modification of the Drude terms in the linear dispersion of ITO materials. Our results extend the Huttner–Barnett–Bechler electrodynamics model to the case of non-perturbative optical Kerr-like media providing an intrinsically nonlinear, field-theoretic framework for understanding the exceptional nonlinearity of ITO materials beyond traditional perturbation theory.
ε近零介质非微扰光学非线性的场论描述
在本文中,我们介绍了一种描述ε-近零(ENZ)介质光学非线性的完全非微扰方法。特别是,基于严格的费曼路径积分法,我们建立了光-物质相互作用的穿透拉格朗日场理论,并讨论了它在具有数量级光诱导折射率变化的色散类克尔介质中的应用。具体来说,考虑到氧化铟锡(ITO)非线性的相关情况,我们讨论了 ENZ 介质中非微扰折射率变化的新机制,并确定它自然地来自于具有博恩-因费尔德拉格朗日的标量场理论。此外,我们还建立了一个预测模型,该模型包含了 ITO 材料线性色散中由光线引起的德鲁德项修正所产生的内在饱和效应。我们的研究结果将 Huttner-Barnett-Bechler 电动力学模型扩展到了非微扰光学 Kerr-like 介质的情况,为理解 ITO 材料的特殊非线性提供了一个超越传统微扰理论的内在非线性场论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信