Yurika Taniguchi , Shinya Kokuryo , Ryuji Takada , Xinran Yang , Koji Miyake , Yoshiaki Uchida , Norikazu Nishiyama
{"title":"Fluoropyridine-medicated zeolite templating method for N/F co-doped carbon with high electrocatalytic performance on oxygen reduction reaction","authors":"Yurika Taniguchi , Shinya Kokuryo , Ryuji Takada , Xinran Yang , Koji Miyake , Yoshiaki Uchida , Norikazu Nishiyama","doi":"10.1016/j.elecom.2024.107665","DOIUrl":null,"url":null,"abstract":"<div><p>Heteroatom-doped carbons have attracted increasing attention in recent years as inexpensive high-performance electrocatalytic materials owing to their electrical properties. A precisely controlled synthesis method for heteroatom-doped carbons is important to improve their performance and expand their applications. In this study, we developed a fluoropyridine-medicated zeolite templating method for Nitrogen/Fluorine (N/F) co-doped carbons. The N/F co-doped carbons showed better catalytic performances for oxygen reduction reaction (ORR) than N-doped carbon prepared using pyridine. In particular, the optimized N/F co-doped carbon exhibited a higher half-wave potential (0.87 V vs. RHE) than commercial Pt-loaded carbon black and N/F co-doped carbons reported in the literature. The comparative studies using various N/F co-doped carbons revealed that semi-ionic bonded C-F might improve ORR activity. In contrast, the contribution from covalent or ionic C-F to improving ORR activity would be negligible.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000080/pdfft?md5=07333cee4d218595ce141a4b9970bc24&pid=1-s2.0-S1388248124000080-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000080","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Heteroatom-doped carbons have attracted increasing attention in recent years as inexpensive high-performance electrocatalytic materials owing to their electrical properties. A precisely controlled synthesis method for heteroatom-doped carbons is important to improve their performance and expand their applications. In this study, we developed a fluoropyridine-medicated zeolite templating method for Nitrogen/Fluorine (N/F) co-doped carbons. The N/F co-doped carbons showed better catalytic performances for oxygen reduction reaction (ORR) than N-doped carbon prepared using pyridine. In particular, the optimized N/F co-doped carbon exhibited a higher half-wave potential (0.87 V vs. RHE) than commercial Pt-loaded carbon black and N/F co-doped carbons reported in the literature. The comparative studies using various N/F co-doped carbons revealed that semi-ionic bonded C-F might improve ORR activity. In contrast, the contribution from covalent or ionic C-F to improving ORR activity would be negligible.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.