A finite element model for concentration polarization and osmotic effects in a membrane channel

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nicolás Carro, David Mora, Jesus Vellojin
{"title":"A finite element model for concentration polarization and osmotic effects in a membrane channel","authors":"Nicolás Carro,&nbsp;David Mora,&nbsp;Jesus Vellojin","doi":"10.1002/fld.5252","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study a mathematical model that represents the concentration polarization and osmosis effects in a reverse osmosis cross-flow channel with dense membranes at some of its boundaries. The fluid is modeled using the Navier–Stokes equations and the solution-diffusion is used to impose the momentum balance on the membrane. The scheme consist of a conforming finite element method with the velocity–pressure formulation for the Navier–Stokes equations, together with a primal scheme for the convection–diffusion equations. The Nitsche's method is used to impose the permeability condition across the membrane. Several numerical experiments are performed to show the robustness of the method. The resulting model accurately replicates the analytical models and predicts similar results to previous works. It is found that the submerged configuration has the highest permeate production, but also has the greatest pressure loss of all three configurations studied.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study a mathematical model that represents the concentration polarization and osmosis effects in a reverse osmosis cross-flow channel with dense membranes at some of its boundaries. The fluid is modeled using the Navier–Stokes equations and the solution-diffusion is used to impose the momentum balance on the membrane. The scheme consist of a conforming finite element method with the velocity–pressure formulation for the Navier–Stokes equations, together with a primal scheme for the convection–diffusion equations. The Nitsche's method is used to impose the permeability condition across the membrane. Several numerical experiments are performed to show the robustness of the method. The resulting model accurately replicates the analytical models and predicts similar results to previous works. It is found that the submerged configuration has the highest permeate production, but also has the greatest pressure loss of all three configurations studied.

Abstract Image

膜通道中浓度极化和渗透效应的有限元模型
在本文中,我们研究了一个数学模型,该模型表示了反渗透横流通道中的浓度极化和渗透效应,该通道的部分边界上有致密膜。流体采用纳维-斯托克斯方程建模,并利用解-扩散对膜施加动量平衡。该方案包括纳维-斯托克斯方程的速度-压力公式的符合有限元法,以及对流-扩散方程的基元方案。尼采方法用于施加跨膜渗透条件。为显示该方法的稳健性,进行了多次数值实验。所得到的模型精确地复制了分析模型,并预测了与之前工作相似的结果。研究发现,在所研究的三种配置中,浸没配置的渗透产量最高,但压力损失也最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信