One-Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles: 2. Validation

IF 3.7 2区 地球科学
Space Weather Pub Date : 2024-01-09 DOI:10.1029/2023sw003571
S. Elvidge, S. B. Healy, I. D. Culverwell
{"title":"One-Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles: 2. Validation","authors":"S. Elvidge, S. B. Healy, I. D. Culverwell","doi":"10.1029/2023sw003571","DOIUrl":null,"url":null,"abstract":"Culverwell et al. (2023, https://doi.org/10.22541/essoar.168614409.98641332) described a new one-dimensional variational (1D-Var) retrieval approach for ionospheric GNSS radio occultation (GNSS-RO) measurements. The approach maps a one-dimensional ionospheric electron density profile, modeled with multiple “Vary-Chap” layers, to bending angle space. This paper improves the computational performance of the 1D-Var retrieval using an improved background model and validates the approach by comparing with the COSMIC-2 profile retrievals, based on an Abel Transform inversion, and co-located (within 200 km) ionosonde observations using all suitable data from 2020. A three or four layer Vary-Chap in the 1D-Var retrieval shows improved performance compared to COSMIC-2 retrievals in terms of percentage error for the F2 peak parameters (NmF2 and hmF2). Furthermore, skill in retrieval (compared to COSMIC-2 profiles) throughout the bottomside (∼90–300 km) has been demonstrated. With a single Vary-Chap layer the performance is similar, but this improves by approximately 40% when using four-layers.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003571","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Culverwell et al. (2023, https://doi.org/10.22541/essoar.168614409.98641332) described a new one-dimensional variational (1D-Var) retrieval approach for ionospheric GNSS radio occultation (GNSS-RO) measurements. The approach maps a one-dimensional ionospheric electron density profile, modeled with multiple “Vary-Chap” layers, to bending angle space. This paper improves the computational performance of the 1D-Var retrieval using an improved background model and validates the approach by comparing with the COSMIC-2 profile retrievals, based on an Abel Transform inversion, and co-located (within 200 km) ionosonde observations using all suitable data from 2020. A three or four layer Vary-Chap in the 1D-Var retrieval shows improved performance compared to COSMIC-2 retrievals in terms of percentage error for the F2 peak parameters (NmF2 and hmF2). Furthermore, skill in retrieval (compared to COSMIC-2 profiles) throughout the bottomside (∼90–300 km) has been demonstrated. With a single Vary-Chap layer the performance is similar, but this improves by approximately 40% when using four-layers.
利用无线电掩星弯曲角的一维可变电离层检索: 2. 验证
Culverwell 等人(2023 年,https://doi.org/10.22541/essoar.168614409.98641332)描述了一种新的电离层全球导航卫星系统无线电掩星测量一维变分(1D-Var)检索方法。该方法将用多个 "Vary-Chap "层建模的一维电离层电子密度剖面映射到弯曲角空间。本文使用改进的背景模型提高了一维-Var检索的计算性能,并通过与基于阿贝尔变换反演的COSMIC-2剖面检索和使用2020年所有适当数据的共定位(200公里以内)电离层观测进行比较,验证了该方法。就 F2 峰值参数(NmF2 和 hmF2)的百分比误差而言,与 COSMIC-2 相比,1D-Var 检索中的三层或四层 Vary-Chap 性能有所改善。此外,与 COSMIC-2 相比,在整个底面(∼90-300 公里)的探测技术也得到了证明。使用单个 Vary-Chap 图层时,性能相似,但使用四个图层时,性能提高了约 40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
29.70%
发文量
166
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信