On Conformally Killing Vector Fields on a 2-Symmetric Indecomposable Lorentzian Manifold

IF 0.5 Q3 MATHEMATICS
M. E. Gnedko, D. N. Oskorbin, E. D. Rodionov
{"title":"On Conformally Killing Vector Fields on a 2-Symmetric Indecomposable Lorentzian Manifold","authors":"M. E. Gnedko, D. N. Oskorbin, E. D. Rodionov","doi":"10.3103/s1066369x23100055","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A natural generalization of Killing vector fields is conformally Killing vector fields, which play an important role in the study of the group of conformal transformations of manifolds, Ricci flows on manifolds, and the theory of Ricci solitons. In this paper, conformally Killing vector fields are studied on 2-symmetric indecomposable Lorentzian manifolds. It is established that the conformal factor of the conformal analogue of the Killing equation on them depends on the behavior of the Weyl tensor. In addition, in the case when the Weyl tensor is equal to zero, nontrivial examples of conformally Killing vector fields with a variable conformal factor are constructed using the Airy functions.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"113 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23100055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A natural generalization of Killing vector fields is conformally Killing vector fields, which play an important role in the study of the group of conformal transformations of manifolds, Ricci flows on manifolds, and the theory of Ricci solitons. In this paper, conformally Killing vector fields are studied on 2-symmetric indecomposable Lorentzian manifolds. It is established that the conformal factor of the conformal analogue of the Killing equation on them depends on the behavior of the Weyl tensor. In addition, in the case when the Weyl tensor is equal to zero, nontrivial examples of conformally Killing vector fields with a variable conformal factor are constructed using the Airy functions.

论 2 对称不可分解洛伦兹积分形上的共形起宁向量场
摘要 基林向量场的一个自然概括是共形基林向量场,它在流形的共形变换群、流形上的利玛窦流以及利玛窦孤子理论的研究中发挥着重要作用。本文研究了 2 对称不可分解洛伦兹流形上的共形基林向量场。研究证明,基林方程的共形模拟的共形因子取决于韦尔张量的行为。此外,在韦尔张量等于零的情况下,利用艾里函数构造了具有可变共形因子的共形基林向量场的非微观例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信